Electronic Communications of the EASST
Volume 37 (2011)

Workshops der wissenschaftlichen Konferenz
Kommunikation in Verteilten Systemen 2011
(WowKiVS 2011)

Methods and Tools for Engineering Self-Organizing Software Systems
Ante Vilenica and Jan Sudeikat

12 pages

Guest Editors: Horst Hellbriick, Norbert Luttenberger, Volker Turau

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Methods and Tools for Engineering Self-Organizing Software
Systems

Ante Vilenica! and Jan Sudeikat’

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
Vogt-Kolln-Str. 30, 22527 Hamburg, Germany'
Multimedia Systems Laboratory
Hamburg University of Applied Sciences
Berliner Tor 7, 20099 Hamburg, Germany?

Abstract: Developing software systems that can cope with constantly changing
contexts automatically and at runtime is a challenging task. Most importantly,
changing contexts require adaptive system behavior in order to maintain system
functionality even under dynamically changing environment conditions. And this
relates not only to the core system functionality but also to non-functional aspects
such as, e.g., reliability and/or scalability. In order to deal with such challenges ade-
quately, this paper presents an approach that adapts the paradigm of Self-Organization
to computer software systems. It enables systems to preserve their main caracteris-
tics while changing their structure in consequence to outside influences without the
existence of any central controller. So, the specific aim of this paper is to address
the utilization of Self-Organization in engineering software systems. Accordingly,
it presents a set of methods and tools as developed in a recent research project for
engineering self-organizing software systems. The underlying approach is organ-
ised around state-of-the-art software engineering phases such as system modelling,
programming, and the respective software development procedure.

Keywords: Self-Organization, Distributed Systems, Decentralized Coordination

1 Introduction

The development and configuration of (distributed) computer systems is more and more chal-
lenged by the rising complexity of these systems. Thereby, complexity of these systems is
disclosed by the heterogeneity of software and hardware components, dynamically changing
communication partners and connections as well as the spatial distribution of cooperation part-
ners. Even more, complexity is increased through the usage of independent and autonomous
components as well as dependencies among these components and dynamically changing con-
texts. In the end this leads to a situation where the type and availability of system components
and resources is constantly changing. In order to enable a mostly autonomous management of
computer systems even in such a dynamic environment adaptive system characteristics are re-
quired. Adaptation [Zad63] means thereby the ability to adjust respectively to customize mostly
autonomously the configuration of a computer system in spite of a highly dynamic and un-
predictable environment. Currently, there are various research projects that aim at proposing

1/12 Volume 37 (2011)

Engineering Self-Organizing Software Systems E}

solutions for the development of adaptive software systems. Prominent examples are the Auto-
nomic Computing [KCO03] initiative of IBM as well as the priority program Organic Computing
[BMM " 06] of the German Research Foundation. Although these projects have different back-
grounds and therefore propose different kinds of blueprints for software architectures they still
have one aspect in common. Basically, these projects propose architectures that rely on a hierar-
chical and centralized design. One advantage of such an approach is the exploitation of common
development techniques and design patterns which eases the usage respectively adoption of the
approaches for software developers. Examples are the usage of top-down design as well as some
kind of central controller to manage important decisions, i.e. decisions related to adaptivity, of a
software system at runtime. Both of them are quite common and do therefore usually not require
additional effort to be learned and applied. At the same time these mentioned blueprints for soft-
ware architectures have drawbacks that are related to common non functional requirements such
as scalability, failure tolerance and robustness. From this perspective on, this paper argues that
decentralized approaches are a valuable path to cope with the challenges related to non functional
requirements. Moreover, it is advocated that the concept of Self-Organization (SO) is a promis-
ing approach to develop software systems that have a completely decentralized architecture and
that are capable of managing and changing their structure according to internal and external in-
fluences at runtime without external control. Self-organizing processes are characterized by local
strategies and local interactions, i.e. design and policies on the micro level, that lead to stable and
adaptive structures on the global level. Also, Self-Organization incorporates different decentral
coordination mechanisms which serve as patterns for the local interaction among components on
the micro level.

This work describes the intermediate results of the research project ’Selbst-Organisation durch
Dezentrale Koordination in Verteilten Systemen”' (SodekoVS) which is funded by the *Deutsche
Forschungsgemeinschaft”?. The message of this paper is that is it possible to engineer self-
organizing software systems. Therefore, this paper gives an outline on methods and tools that
where developed in order to be able to engineer the utilization of the paradigm of Self-Organization
within software systems. Rather than explaining all tools and methods in detail it aims at giving
a guideline how to develop such systems in general. More specific, this guideline tackles aspects
that relate to the development process, modeling and programming of a software application.
It consists of an approach that allows developing functional (local) components independently
of the interaction strategy, i.e. decentral coordination mechanism. The aspect of coordination,
which is identified as a key aspect, is encapsulated within a layer and a publish/perceive interface
and allows for transparent exchangeability of coordination mechanisms at runtime.Also, this sep-
aration allows reusing coordination mechanisms in a convenient way. In practice the presented
results can be used to solve different problems in very distinct application domains, e.g. for the
management of resources in logistics or for clustering in data mining.

The paper is structured as follows: the next section introduces the concept of Self-Organization
briefly. Section 3 presents methods and tools that were developed in order to enable software
developers to engineer self-organizing software systems. Finally, section 4 gives a conclusion
and points out remaining challenges.

! Self-Organization Based on Decentralized Coordination in Distributed Systems
2 German Research Foundation

Proc. WowKiVS 2011 2/12

Eg ECEASST

2 The Concept of Self-Organization

The concept of Self-Organization is quite established and wide spread in natural complex sys-
tems. Instances can be found in biology, physics, and chemistry but also in social systems. Well
known-examples are molecular self-assembly, spontaneous magnetization and ant colony opti-
mization [DS04] which can be used to deal with the traveling salesman problem. Although,
there is a plethora of definitions that try to identify the core aspects of Self-Organization there
is one definition which tries to point out the most important aspects without having the focus
only on a certain domain. DeWolf and Holvoet propose following definition: ~’Self-organisation
is a dynamical and adaptive process where systems acquire and maintain structure themselves,
without external control” [DHO4, p.7]. This definition underlines important characteristics of
self-organizing systems that reveal why this concept is of special interest for the development of
complex distributed systems. It points out the strengths of decentral approaches that are able to
deal meaningful with perturbations in the absence of a central controller. This is mostly achieved
by systems that consist of many but simple components with local strategies that lead to collec-
tive behaviour. In addition, [SGK06] emphasize the ability of self-organizing systems to deal
with perturbations at runtime, i.e. to re-organize the structure in order achieve and maintain
goals on the macro level.

Closely related to the concept of Self-Organization and sometimes also mixed up is the no-
tion of emergence. This concept denotes the occurrence of novel properties, structures or patterns
within a system that are novel w.r.t. the individual parts of the systems” [DHO04, p.3]. Therefore,
emergence shares similar aspects with Self-Organization as both concepts describe dynamic pro-
cesses that arise over time and that are robust. However, they are different and can exist isolated
in systems.

By analyzing the aforementioned properties of self-organizing processes it is obvious that
this paradigm provides characteristics that are desirable for the adaptive and autonomous man-
agement of computer systems in a dynamic and unpredictable environment. The applicability
of this approach, i.e. the utilization of self-organizing processes in computer systems, has for
example been demonstrated in [MMTZ06]. The authors have identified and categorized differ-
ent self-organizing mechanisms and present case studies where these mechanisms are applied
in computer systems. Some examples are: foraging and brood sorting can be used for the re-
allocation of resources in Grid frameworks, morphogenesis is useful for the development of
artificial immune systems that are used to protect computer systems from malicious code, mold-
ing can be useful for the self-assembly in robotics and flocking for the motion coordination of
unmanned airspace vehicles. These examples show the broad variety of self-organizing mecha-
nisms and serve furthermore as a proof of concept for the incorporation of Self-Organization in
computer systems. However, an analysis of theses case studies reveals existing challenges. The
main problem is that there is a lack of an approach that guides systematically the engineering
of self-organizing processes in software applications. Most of existing self-organizing processes
are designed ad hoc and tailored towards a specific mechanism and application domain [DHS06].
It requires therefore much effort to reuse self-organizing processes as they are often intertwined
with the application logic and difficult to separate.

3/12 Volume 37 (2011)

Engineering Self-Organizing Software Systems E}

Engineering Self-Organising Software Systems

Development

Modeling Programing Process

Figure 1: Pillars of the proposed approach

3 Engineering Self-Organizing Software Systems

This section presents the SodekoVS approach for systematically engineering self-organizing pro-
cesses for software systems. It allows developing these systems purposefully and equipping
them with aspects from software engineering like re-usability, transparency and exchangeability.
From an abstract point of view it follows the idea of [GC92] that have proposed following equa-
tion: Programming = Computation + Coordination. In accordance with this, the SodekoVS ap-
proach proposes a generic system architecture that allows equipping software systems with self-
organizing processes independently of the applied decentral coordination mechanism. Moreover,
the latter aspect is used as an interchangeable and transparent glue to manage the components
of the system. Thereby, the components contain their core functionality which can be devel-
oped isolated from the self-organizing process. Therefore, the generic system architecture gives
a solution to the question how to integrate self-organizing processes into software systems in a
convenient and appropriate way. For clarification, we will call aspects related to this problem
as challenges of the integration level. In addition to the aspect of programming self-organizing
systems the SodekoVS approach also proposes tools and methods that aim at supporting the
modeling of Self-Organization as well as the development process. For clarification, we will call
this the level of Self-Organization as it targets aspects directly related to the utilization of this
concept.

In conclusion it can be stated that the approach consists of three pillars (cf. figure 1), i.e. mod-
eling, programming and development process, which target both the level of Self-Organization
itself and the level of its integration into software systems. In combination this leads to an
approach that guides the engineering of self-organizing processes in software systems. The fol-
lowing subsections will explain the approach in more detail.

3.1 Modeling

This subsection describes a modeling approach that is specificly tailored to the characteristics
of self-organizing processes for software systems. According to [HWMO6] these processes are
characterized by three properties. First, they form structures, i.e. specific parts of the application
are aligned. In doing so, the type of structure is initially formed but is also able to react and

Proc. WowKiVS 2011 4/12

Eg ECEASST

Application

exhibits

A J

: - implicated by Systemic Process Model
‘ Adaptation Dynamic | (Feedback Structure)

. A
“33“27‘ \2escribed by

Coordination Mechanism(s) - ‘ Coordinating Process }7
. structure / instance of
‘ Information Exchange | instruct

| Local Entity Adaptation

Figure 2: Conceptual model of a decentral coordination process for Self-Organization, following
[Sudl10]

change to internal and external influences. This reveals the second property of self-organizing
processes, in particular adaptivity. The third property states that these processes evolve generally
through interaction among equal components of the system, i.e. they are decentral. All together
these properties challenge the modeling of self-organizing processes by applying conventional
techniques from software engineering. Therefore, a new approach has been proposed that tackles
these challenges. Figure 2 depicts the idea of this approach. Decentral Coordinating Processes
are identified as independent elements of the application design and implementation. Applica-
tions exhibit certain dynamics and thereby those dynamics are of special interest that lead to the
ability to adapt to changes in the context of the application. This behavior, i.e. adaptivity, of the
software system can be described and enforced at runtime as a coordination process that is part of
the application and that manages the behavior of the system. In order to realize these coordination
processes in software systems coordination mechanisms are required. They can be categorized
into two groups [Sud10]: Information Exchange and Local Entity Adaption. The former are in
charge of spreading out information in the system and w.r.t. to Self-Organization mechanisms as
pheromones [BCO6] or computational fields [MZ05] have to be mentioned. In contrast, the latter
ones are in charge of enabling system components to change the local behavior, i.e. mechanisms
as control systems [Bro86] or stochastically role based approaches [WSHGO04]. The combination
of both types of coordination mechanisms allows establishing interdependencies among compo-
nents of the system as information can be distributed and evaluated by single entities and cause
eventually changes of local behavior. From a more formal point of view, the interdependencies
among system components can be formalized in a systemic process model. This model describes
the general structure of the coordination process as a network that contains the system compo-
nents and their interdependencies. For a concrete application this general structure is instantiated
and refined with parameters for the contained mechanisms. The parameterization influences the
dynamic behavior of the system at runtime. Hence, systemic process models define classes of
interdependency structures that can be used to create various concrete coordination processes.

It has been shown that the phenomena that self-organizing systems exhibit can be explained
with (distributed) feedback loops [BDT99, BMG " 09]. Using feedback loops to model and ana-
lyze the interdependency structure of a software system enables engineering the dynamic behav-
ior of the system on a global level. With this modeling approach it is possible to detect undesired

5/12 Volume 37 (2011)

Engineering Self-Organizing Software Systems E}

phenomena as oscillations and fixed points. Moreover, by adding additional feedback loops to the
original system model it is possible to prevent undesired phenomena. This modeling approach is
different to other approaches as [Edm04, Ger(7] since it does not model the desired phenomena,
i.e. system structures, itself. In contrast, it models and adjusts the reasons, i.e. feedback loops,
which cause the structures. It is therefore a bottom-up modeling approach. More specific, the
proposed modeling approach bases on established techniques from the research area of system
dynamics and tailors them towards the specific requirements of agent-based distributed systems.
On the one hand it utilizes causal loop diagrams [Ste00] which are used to graphically model
the variables of a system and their interdependencies. On the other hand it uses an agent causal
behavior graph (ACBG) [Sud10] as a more formal representation of the elements, i.e. software
agents, and their interdependencies.

Additionally, the developed systemic modeling approach has been used to describe and clas-
sify well-known self-organizing processes. These processes are catalogued according to the
properties of the structure as well as the characteristics of the structure they evolve. This classi-
fication extends existing catalogues [MMTZ06, DH06] as it adds two new properties to describe
self-organizing processes for software systems. The first property describes the structure of the
interdependencies among system components as they cause feedback loops which lead to adap-
tive behavior on system level. Another property targets the description of the structure that these
loops cause on system level. Thereby, it has to be pointed out that the catalogue characterizes
self-organizing processes independently of a specific application domain. Moreover, it describes
the characteristics of the structure and evolved phenomena in general and can therefore be used
to select the appropriate process for a specific software system. More details about the catalogue
can be found in [Sud10]. In conclusion it can be stated that the developed method and tool sup-
port a systematic modeling of self-organizing processes for software systems. It supports the
re-usability of theses processes as their structure and dynamics can be modeled and analyzed
independently of a specific application.

3.2 Programming

The goal of this section is to present an approach that enables the programming of self-organizing
systems. It targets therefore the level of integration as it shows how application developers can
equip (existing) software systems with self-organizing properties. Figure 3 depicts the blueprint
of an architecture that guides the integration. It is a layered architecture which has the function-
ality of the software system as it is perceived by users at the top layer. Hence, it is assumed
that the software system is realized by a multi agent system, i.e. a system that consists of (many)
single components (so called agents) which offer certain functions and act thereby autonomously
and proactively. By interacting with each other the single agents are able to provide function-
ality at system level. Agents are executed on a distributed middleware platform which offers
general functionalities that are required for an execution of a multi agent system. Between the
bottom layer, i.e. the execution infrastructure, and the top layer the architecture proposes a co-
ordination layer which encapsulates all aspects related to the task of coordination. On the one
hand the coordination layer consists of coordination media which serve as an infrastructure for
communication by offering wide-spread interaction mechanisms via a generic publish/subscribe
interfaces. On the other hand it contains coordination endpoints which serve as mediators be-

Proc. WowKiVS 2011 6/12

(=

ECEASST

application
Application 3 i[dependent

s = functionality
| | || | | |

e 3 ft, 45 P 45 E— 45 P generic

Ro— e @QENt
Agent Agent Agent Agent : interaction

-Applicaﬁon Layer

decentral

@ T_T Q ﬁ ﬂ ﬁ <::'> coordination

L L — 1 [self-
Coordination <:> Coordination <:> Coordination organization]

publication / perception publication / perception publication / perception

coordination
ﬁ F | @ﬁ information
U ﬁﬂ publication /

[Coordination Medium } perception

T

coordination

H ﬁ Coordination Medium) ; h
/ service
2 SLF L T

_ usage
‘ agent

@ platform
service

-, Execution Infrastructure Layer usage

 “Coordination Layé}’"

(Agent Platform

Figure 3: Blueprint of an architecture for self-organizing software systems, following [Sud10]

tween the local components, i.e. agents, and the coordination media. Endpoints are software
components that observe the execution of agents and are also able to modify them. Thereby,
endpoints encapsulate the coordination logic and perform automatically the tasks which are re-
lated to the successful execution of coordination. These tasks contain all aspects related to the
interaction with other components, i.e. to initiate interaction as well as to participate. This hap-
pens w.r.t. to observations of the agent as well as the coordination media. Moreover, the endpoint
has the possibility to modify the state of the agent if it is required.

The proposed architecture extends related approaches that aim at integrating decentral coor-
dination of agents at two aspects. First, it emphasizes a clear separation of application logic
and coordination logic. Second, the blueprint allows integrating coordination in an almost non-
invasive manner, i.e. it is possible to execute automatically activities which are required for the
coordination among components of the system.

To proof the concept of the architecture two execution platforms have been implemented.
They differ in the way they realize the coordination layer. One implementation ([Sud10]) is
inspired by the paradigm of distributed event-based systems and proposes a distributed approach
for the realization of coordination endpoints. The other implementation ([VSL™10]) realizes the
endpoint functionality as a functionality of the environment where the agents are situated. It
introduces the concept of coordination spaces as a dedicated part of environments which are in
charge of encapsulating aspects related to the task of agent coordination. Both implementations
are realized on the Jadex Agent Framework’.

In addition to the reference architecture and its implementations the programming of self-
organizing software systems is supported by the XML-based configuration language MASDy-
namic [Sud10]. This language allows specifying details of ACBG-based process definitions in
order to enable their automatic execution within the reference implementation. MASDynamic
acts therefore as a connector between an abstract process definition and the implementation of

3 http://jadex.informatik.uni-hamburg.de

7/12 Volume 37 (2011)

Engineering Self-Organizing Software Systems E}

the system components that are coordinated. It contains two description levels: the abstract rep-
resentation of generic process structures that are independent from a concrete software system
and the detailed mapping of process elements to components in the realization of an agent-based
software system. More specific, MASDynamic allows specifying exactly the structure of interac-
tions among components. First, it describes the kind of component behavior which is of interest
for the self-organizing process. Second, it determines which coordination medium to use. Third,
it specifies which component behavior can be influenced by interactions. Hereby, component
behavior is specified w.r.t. to elements of agents as goals, plans, beliefs etc. MASDynamic itself
is designed as a general language which abstracts from specific interaction techniques. Addi-
tionally, MASDynamic can be used as a basis to define classes of coordination processes which
again can be further refined and parameterized for specific applications.

3.3 Development Procedure

The conception of self-organizing problem solving strategies requires considerate expertise. For
software development teams this is particularly challenging since self-organizing phenomena
are interdisciplinary objects of research. Within the SodekoVS project, this is reflected by the
adoption of a modelling approach (see s ection 3.1) for the description of complex adaptive
systems [Ste00]. The programming model continues the modelling approach as it enables to
transform systemic models of processes to detailed prescriptions of process instances that can be
executed by the proposed middlware layer.

Due to the inherent challenges and the adoption of a tool set that reflects the interdisciplinary
nature of self-organizing systems, guidance in the application development is needed. Therefore,
a detailed development procedure has been revised. The conception of a process that creates, due
to bottom-up causation, the intended system level structures is non-trivial and creative act. The
procedure can not resolve these issues but the fundamental development strategies, activities and
detailed steps have been identified to guide and plan for the application development [Sud10].

Conceptually, this procedure is conceived as an extension to established development pro-
cesses. An early evaluation of development methodologies for agent based systems has shown
that development processes and modelling approaches are typically biased towards specific de-
velopment platforms [SBPL04]. Consequently, development teams benefit from using the right
match of an (implementation) platforms and methodological support. When addressing self-
organizing solutions the selection of the implementation tools and the related methodology
should be affected as less as possible. Therefore, the conception, refinement and integration
of a self-organizing dynamic is understood as an supplement to the conventional application de-
velopment. Method engineering techniques for MAS [CGGSO07], in particular the Software &
Systems Process Engineering Metamodel Specification (SPEM)* is used to describe the process
extension in a standardized format. Using this approach, the integration of self-organizing prop-
erties can be addressed by development teams when needed. For example, experimentation with
prototypes of elaboration of the system requirements can reveal the need for adjustments of the
dynamical system behaviour by decentralized coordinating processes.

The extension to development processes is illustrated in figure 4. It shows a set of development

4 http://www.omg.org/spec/SPEM/2.0/

Proc. WowKiVS 2011 8/12

E} ECEASST

Application Design Models: Task
Domain Organizational Environment Agent Artifact
Description MAS Model Model {Model(s)
— — — =

[meets

. 2] <<optinal>> o requirement] Nyey
D) |1z ! L ‘
v =L 2 =2 =2 H
e ™ " Coord. ¢---- SO/Emergent Coord. Validation Coord. Process

i . <<optional>> i > ipti
Requirements 350 <<0P“°”?'? Process Property Description (Qualitative) Integration Coordination

De\ﬁDition ~ Prepared
Systemic Application Strategy : AgeModel(s)
~ Domain Dynamics Model ~ Template
,, N 5 S N R -
Systemic Adaptation Coord. Process __Y _ Coordination
Requirement (MASDynamics Model) (- Validation

=2 (Quantitative)

@/ [meets requirement] ’) ‘
S ~

Figure 4: The development and integration of a self-organization process in an agent-based
software system [Sud10]

activities and development artefacts that are conceptually related to the self-organizing aspects
of the MAS. Following the SPEM conceptual model, development activities describe reusable
aspects of the application development and artefacts refer to the elements that are created and/or
modified by these activities. The denoted activities supplement the fundamental Requirements,
Analysis, Design, and Testing disciplines in software development (e.g. see [JBR99]). The ac-
tivities are interlinked with the application development via a set of Application Design Models.
These originate in the conventional application development and describe the agent-based soft-
ware system. When these models change during incremental development, developers check
whether the SO-related activities have to be repeated or SO-specific artefacts have to be updated.
The Adaptivity Requirements activity addresses the description of the intended system behaviour
[SRO7]. The resulting model (Systemic Adaptation Requirement) describes how the system is
expected to adapt at run-time. Based on the intended behaviour an appropriate process model is
derived in the Coordinating Process Definition activity [SR10]. A supplement is factored out by
comparing the models of the intended dynamics with the current application behaviour. When
properly integrated, this addition is capable to enhance the operation of the software system.
Before the actual implementation, the abstract model of the processes can be validated via sys-
tem simulations (Coordination Validation (Qualitative)) [SRRT09]. After it is validated that the
process is in principle capable to bring about the desired dynamics, it is integrated in an actual
system (Coordinating Process Integration) [SR09]. This is based on the mapping of the process
elements to the elements in the system implementation and annotating the information that are
needed to enable the automated execution, using the corresponding execution middleware. The
outputs of this activity are the Process model (Coordinating Process) and the software agents
that are prepared to participate in this process (Coordination Prepared Agent Model(s)). Finally,
it is validated that the supplementation of the inter-agent process leads to the intended system
level effects. The detailed descriptions of the contained activities in SPEM notation can be found
in [Sud10].

9/12 Volume 37 (2011)

Engineering Self-Organizing Software Systems E}

4 Conclusion & Remaining Challenges

This work has motivated that current tendencies in computer systems require software applica-
tions to be able to adapt to (unpredictable) changes at runtime. The complexity of these systems
demands for solutions that are able to manage the adaptive behavior automatically, i.e. without
manual effort. Inspired by the wide-spread and successful paradigm of Self-Organization in nat-
ural systems it is advocated that this paradigm is also suitable for the development of adaptive
computer systems. Moreover, due to the inherent distributed architecture self-organizing systems
are an adequate approach for providing systems with non-functional requirements as scalability
and failure tolerance. In order to benefit from the advantages of Self-Organization and to cope
with challenges this work has presented a systematic approach for developing software systems
that exhibit self-organizing behavior. This approach guides the engineering of these systems by
presenting methods and tools that target the modeling, programming and development process
of these systems. Therefore, the present approach shows that it is possible to apply the paradigm
of Self-Organization to computer systems in general.

Future work will strive on the one hand towards further improving the usability of the ap-
proach. At the current stage the usage of the methods and tools requires (considerable) learning
effort for application developers which are not familiar with the domains of system dynamics or
SPEM. It is envisioned to provide more high-level interfaces that hide the complexity and ease
therefore the utilization in software projects. As part of this goal, it is also envisioned to provide
best practices. On the other hand future work will target the aspect of enabling and supporting
the exchange of self-organizing processes at runtime. This might be necessary for systems which
contain two or more different modes of operation, i.e. different goals on system level require dif-
ferent self-organizing processes. Thereby, goals of systems can change at runtime due to events
in the environment. This challenge requires the development of appropriate modeling techniques
as well as programming tools.

Acknowledgements: The authors would like to thank Deutsche Forschungsgemeinschaft (DFG)
for supporting this work through a research project on ”Self-organization based on decentralized
co-ordination in distributed systems” (SodekoVS). Furthermore, we would like to thank Win-
fried Lamersdorf, Wolfgang Renz, Lars Braubach and Alexander Pokahr for continued inspiring
discussion and fruitful joint work.

Bibliography

[BCO6] S. Brueckner, H. Czap. Organization, Self-Organization, Autonomy and Emer-
gence: Status and Challenges. ITSSA 2(1):1-10, 2006.

[BDT99] E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence: From Natural to Arti-
ficial Systems. Oxford University Press, 1999.

[BMG'09] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Miiller,
M. Pezze, M. Shaw. Software Engineering for Self-Adaptive Systems. In Cheng

Proc. WowKiVS 2011 10/12

E

ECEASST

[BMM"06]

[Bro86]

[CGGSO07]

[DHO4]

[DHO6]

[DHS06]

[DS04]

[EdmO04]

[GCI2]

[Ger07]

[HWMO06]

[JBR99]

[KCO03]

[MMTZ06]

et al. (eds.). Chapter Engineering Self-Adaptive Systems through Feedback Loops,
pp- 48-70. Springer, 2009.

J. Branke, M. Mnif, C. Miiller-Schloer, H. Prothmann, U. Richter, F. Rochner,
H. Schmeck. Organic Computing — Addressing Complexity by Controlled Self-
organization. In Proc. of ISoLA. IEEE Computer Society Press, 2006.

R. Brooks. A robust layered control system for a mobile robot. Robotics and Au-
tomation, IEEE Journal of 2(1):14 — 23, 1986.

M. Cossentino, S. Gaglio, A. Garro, V. Seidita. Method fragments for agent design
methodologies: from standardisation to research. Int. J. Agent-Oriented Software
Engineering 1(1):91-121, 2007.

T. DeWolf, T. Holvoet. Emergence and self-organisation: a statement of similarities
and differences. In Proceedings of the International Workshop on Engineering Self-
Organising Applications. Pp. 96—110. Springer, 2004.

T. De Wolf, T. Holvoet. A catalogue of decentralised coordination mechanisms
for designing self-organising emergent applications. Technical report CW458,
K.U.Leuven, Department of Computer Science, 2006.

T. De Wolf, T. Holvoet, G. Samaey. Development of Self-organising Emergent Ap-
plications with Simulation-Based Numerical Analysis. In Brueckner et al. (eds.),
Engineering Self-Organising Systems. LNCS 3910, pp. 138—152. Springer, 2006.

M. Dorigo, T. Stiitzle. Ant Colony Optimization. MIT Press, 2004.

B. Edmonds. Using the Experimental Method to Produce Reliable Self-Organised
Systems. In Brueckner (ed.), Engineering Self-Organising Systems: Methodologies
and Applications. LNAI 3464, pp. 84-99. Springer, 2004.

D. Gelernter, N. Carriero. Coordination languages and their significance. Commun.
ACM 35:97-107, 1992.

C. Gershenson. Design and Control of Self-Organizing Systems. PhD thesis, Vrije
Universiteit Brussel, 2007.

K. Herrmann, M. Werner, G. Miihl. A Methodology for Classifying Self-Organizing
Software Systems. ITSSA 2(1):41-50, 2006.

I. Jacobson, G. Booch, J. Rumbaugh. The unified software development process.
Object Technology Series. Addison Wesley, 1999.

J. O. Kephart, D. M. Chess. The Vision of Autonomic Computing. Computer
36(1):41-50, 2003.

M. Mamei, R. Menezes, R. Tolksdorf, F. Zambonelli. Case studies for self-
organization in computer science. J. Syst. Archit. 52(8):443-460, 2006.

11/12

Volume 37 (2011)

Engineering Self-Organizing Software Systems Eﬁ

[MZ05]

[SBPLO4]

[SGKO6]

[SRO7]

[SRO9]

[SR10]

[SRRTO09]

[Ste00]

[Sud10]

[VSL*10]

[WSHGO04]

[Zad63]

M. Mamei, F. Zambonelli. Field-Based Coordination for Pervasive Multiagent Sys-
tems (Springer Series on Agent Technology). Springer, 2005.

J. Sudeikat, L. Braubach, A. Pokahr, W. Lamersdorf. Evaluation of Agent—Oriented
Software Methodologies - Examination of the Gap Between Modeling and Plat-
form. In Agent-Oriented Soft. Eng. V, 5. Int. Work. AOSE 2004. Pp. 126-141. 2004.

G. D. M. Serugendo, M. P. Gleizes, A. Karageorgos. Self-Organisation and Emer-
gence in MAS: An Overview. Informatica (Slovenia) 30(1):45-54, 2006.

J. Sudeikat, W. Renz. On Expressing and Validating Requirements for the Adap-
tivity of Self-Organizing Multi-Agent Systems. Syst.and Inf. Sc. Notes 2(1):14-19,
2007.

J. Sudeikat, W. Renz. Programming Adaptivity by Complementing Agent Func-
tion with Agent Coordination: A Systemic Programming Model and Development
Methodology Integration. Com. of SIWN 7:91-102, 20009.

J. Sudeikat, W. Renz. On the Modeling, Refinement and Integration of Decentral-
ized Agent Coordination — A Case Study on Dissemination Processes in Networks.
In Self-Organizing Architectures. LNCS 6090, pp. 251-274. Springer, 2010.

J. Sudeikat, M. Randles, W. Renz, A. Taleb-Bendiab. A Hybrid Modeling Approach
for Self-Organizing Systems Development. Com. of SIWN 7:127-134, 2009.

J. D. Sterman. Business Dynamics - Systems Thinking and Modeling for a Complex
World. McGraw-Hill, 2000.

J. Sudeikat. Engineering Self-Organizing Dynamics in Distributed Systems: A Sys-
temic Approach. PhD thesis, University of Hamburg, Dept. of Informatics, 2010.
http://www.sub.uni-hamburg.de/opus/volltexte/2010/4928/

A. Vilenica, J. Sudeikat, W. Lamersdorf, W. Renz, L. Braubach, A. Pokahr. Co-
ordination in Multi-Agent Systems: A Declarative Approach using Coordination
Spaces. In Trappl (ed.), Proc. of the 20th EMCSR - Int. Work. From Agent Theory to
Agent Implementation. Pp. 441-446. Austrian Soc. for Cybernetic Studies, 4 2010.

D. Weyns, K. Schelfthout, T. Holvoet, O. Glorieux. A role based model for adaptive
agents. In Proceedings of the AISB 2004, Fourth Symposium on Adaptive Agents
and Multi-Agent Systems. Pp. pp. 75-86. 2004.

L. Zadeh. On the definition of adaptivity. Proc. of the IEEE 51(3):469 — 470, 1963.

Proc. WowKiVS 2011 12/12

http://www.sub.uni-hamburg.de/opus/volltexte/2010/4928/

