Electronic Communications of the EASST

Volume 54 (2012)

Proceedings of the
7th International Workshop on Graph Based Tools
(GraBaTs 2012)

Adding Rule-Based Model Transformation
to Modelling Languages in MetaEdit+

Simon Van Mierlo and Hans Vangheluwe

12 pages

Guest Editors: Christian Krause, Bernhard Westfechtel

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122



http://www.easst.org/eceasst/

Eg ECEASST

Adding Rule-Based Model Transformation
to Modelling Languages in MetaEdit+

Simon Van Mierlo' and Hans Vangheluwe’

! simon.vanmierlo @student.ua.ac.be

University of Antwerp, Belgium

2 hv@cs.mcgill.ca
University of Antwerp, Belgium
McGill University, Montréal, Canada

Abstract: MetaEdit+is a commercial tool by MetaCase for creating domain-
specific, syntax-directed visual modelling environments. MetaEdit +synthesizes
such environments from user-provided metamodels and contains a Generator Editor
for code/report generation. An API is provided to allow external manipulation of
models through SOAP. Currently, the MetaEdit+ tool does not natively support
rule-based model-to-model transformation. Such transformations are useful as they
allow domain experts to intuitively (using domain-specific notations) model either
operational semantics (a simulator) or denotational semantics (through model-to-
model transformation onto a model in a known formalism) of a modelling language.
We will demonstrate how to add rule-based operational semantics to modelling lan-
guages in MetaEdit+. In our approach, transformation rules are visually created
in MetaEdit+. The rule editor is synthesized using modified versions of the orig-
inal language’s metamodel. This modification is performed in a structured fashion
using a process called RAMification. Both the model and the rules are exported from
MetaEdit+ to Python code. This code is combined with Py-T-Core, our library of
transformation language primitives, to apply the rules on the model. Our demon-
stration has a client-server architecture, with the MetaEdit+ visual modelling
environment as the client and the transformation engine as the server. After each
transformation step, in-place changes to the model are propagated to MetaEdit+
for visualization using the SOAP API. A simple (manufacturing) Production System
modelling language is used as an example.

Keywords: Model-Driven Engineering, Modelling Languages, MetaEdit+, Rule-
Based Model Transformation

1 Introduction

Model-to-model transformations are an essential part of the Model Driven Engineering (MDE)
approach. They allow the modeller to, for example, define semantics for a modelling language,
either by simulating the model (operational semantics) or by mapping onto a known formalism
(denotational semantics). These transformations can be defined in a number of ways. One of
the most common and intuitive approaches is to use transformation rules. In ATL [JABKOS],

1/12 Volume 54 (2012)


mailto:simon.vanmierlo@student.ua.ac.be
mailto:hv@cs.mcgill.ca

Adding Rule-Based Model Transformation to MetaEdit+ E}

the modeller textually defines transformation rules. This approach closely resembles program-
ming, and may not be desirable for some purposes. The ability to use domain-specific notations
in visual modelling languages is one of their main advantages, and this advantage is partly lost
when using generic specificiations of transformations. Hence, using domain-specific notations
(concrete syntax) of a visual modelling language to create models of transformations (and in
particular, of transformation rules) lowers the threshold to the effective use of transformation.
In addition to specifying individual transformation rules, the order in which the rules are tried
may also be specified using a scheduling language. In Fujaba [NNZ00] and AToM"'3 [LV02],
amongst others, visual modelling of transformations is supported.

In this paper, we show how to add the ability to visually model and execute model transforma-
tions for modelling languages created in Met aEdit+'. The particular example we will focus
on is the description of operational semantics of modelling languages. Operational semantics are
a concrete application of inplace transformations which are used to give an operational meaning
to models created in the modelling language. MetaEdit+ currently does not natively provide
support for model-to-model transformation. It does provide an API for externally manipulat-
ing models through SOAP, and a generator editor for code/text generation. We will use these
two facilities to (1) enable the modelling of transformation rules inside MetaEdit+, to (2)
export a rule-based model transformation model constructed in MetaEdit+ to Python and to
(3) subsequently execute it, using our library of graph transformation primitives T-Core [SV10].
After executing the graph transformation, the results of rewriting the model (which is in essence
a typed, attributed graph), are propagated back to MetaEdit+ for visual feedback. A similar
method was used in constructing the tool booggie [HSHO9] for rule-based design-space explo-
ration. There, a visual environment was constructed around the efficient graph rewriting kernel
GrGen.NET [JBK10]. Our demonstrates the practical applicability of RAMification [KMS™10]
and is structured in a way which makes it easy to reproduce the results in MetaEdit+ or any
other tool that provides similar functionality.

The paper is structured as follows. Section 2 explains the running example of the paper, which
is a domain-specific modelling language for Production Systems we would like to build a sim-
ulator for. Section 3 explains the process of RAMification and how it will be used throughout
the paper. Section 4 explains how the rule editor in MetaEdit+ is constructed using RAMifi-
cation, starting from the original metamodel of a (domain-specific) language. Section 5 presents
the architecture of our solution. Section 6 takes a closer look at the execution flow when a rule
is executed and Section 7 concludes and suggests future work.

2 Running Example

To demonstrate the approach used in this paper we will define a domain-specific language which
is easy to understand but nevertheless non-trivial. The language we create is used to model
production systems of Armoured Personnel Carriers (APCs). The APCs are constructed using
different parts which are generated by machines at the start of the production line. There are

1 http://www.metacase.com/

Proc. GraBaTs 2012 2/12


http://www.metacase.com/

Eg ECEASST

five different kinds of parts: wheels, bodies, tracks, water cannons and machine guns. Differ-
ent amounts of these parts are needed to assemble two types of APC: war APCs and riot APCs.
There are four types of machines: generators, assemblers, quality control machines and a sink. A
machine has to be operated by an operator in order to perform its task. An operator can only op-
erate one machine at any point in time. Machines are connected to each other by conveyor belts.
A generator has one outgoing conveyor belt on which generated parts are placed. Assemblers
have an incoming conveyor belt which supplies parts and an outgoing conveyor belt on which
finished products are placed. Quality control machines have an incoming conveyor belt which
supplies finished products that can either be broken or functioning correctly and two outgoing
conveyor belts which are used to distinguish between these two types. Repair machines have one
incoming conveyor belt, which supplies broken finished products and one outgoing conveyor
belt, where repaired products are placed. Sinks have one incoming conveyor belt which supplies
finished products. Conveyor belts can have multiple incoming connections (either from conveyor
belts or from machines) and one outgoing connection (either to a conveyor belt or to a machine).
This explains, informally, the syntax and static semantics (welformedness rules) of the example
language. These rules can be formalized in a user-defined metamodel in Met aEdit+ and mod-
els can be visually created in the synthetized environment.

Once models can be created, we typically want to give them meaning. In this case, the mean-
ing will allow for simulation of the dynamics of a model. A set of semantic rules will be created
for our modelling language, defining how parts are generated, how they move from one con-
veyor belt to the other, which parts are taken off from which conveyor belt and at what time to
create APCs. Constraints could be added to the language, enforcing that an operator is present
at a machine in order for it to work. Using these semantic rules, simulation experiments can be
created. Running these experiments allow a modeller to discover interesting facts about particu-
lar production system models. Subsequently, performance metricus such as troughput of model
variants can be evaluated to design an optimal production system.

The creation of this simulator for our production system modelling language is done by defin-
ing a sequence of endogenous transformations that describe how the state of a running production
system gets updated as time progresses. This simulator corresponds to the operational semantics
of our language. This is different from denotational semantics, where a model in one language is
mapped by an exogenous model-to-model transformation onto a formalism with known seman-
tics (such as Petri Nets or code). The techiques we describe in this paper can also be used to
define denotational semantics.

Defining our production system simulator can be done in a number of ways. An external simu-
lator could be written in a general-purpose programming language and production system models
are exported by a MetaEdit+ exporter to be simulated by that program. This is, however, not
in line with the MDE approach, where as much as possible should be modelled explicitely, at
the most appropriate level(s) of abstraction, using the most appropriate formalism(s). In the next
section, we take a look at the possibilities to explicitely model transformations using a systematic
approach.

3/12 Volume 54 (2012)



Adding Rule-Based Model Transformation to MetaEdit+ E}

3 RAMification

In [KMS™10], Kiihne et al. advocate the explicit modelling of abstract and concrete syntax of
transformation languages. They state that the advantages of metamodelling in general apply to
the modelling of transformation language in particular as well: (1) the specification is not hidden
in the code of a tool, making it easier to understand and correct, (2) one can reason about the
specifications and the instance models they describes, (3) one may synthesize modelling environ-
ments from the specification and (4) this makes it easy for users to alter the specification instead
of requiring a new tool release. That is why Kiihne et al. explore the possibility of explicitely
modelling (visual) rule-based model transformation languages for (visual) modelling languages
described by a metamodel. The rules consist of a Left-Hand Side (transformation pre-condition)
pattern (LHS, describing the part of the model that should be matched for the rule to be ap-
plied), zero or more Negative Application (transformation pre-)Conditions (NACs, specifying
the patterns that, when found, should stop the rule from being applied), and a Right-Hand Side
(post-condition) pattern (RHS, specifying how the matched part of the model should be rewrit-
ten).

The patterns that can appear in the LHS, RHS and NACs are, of course, very similar to the

models we can create in the original modelling language. It is therefore logical to try to reuse the
metamodel that defines the original language for the pattern specification language, instead of
creating one from scratch. Above all, starting from the (domain-specific) modelling language’s
metamodel allows for a highly specific transformation language which only permits transforma-
tion rules with patterns specific to the modelling language, including language-specific (visual)
pattern notations.
We cannot simply copy the metamodels and use them for specifying the patterns of a rule. Firstly,
the patterns that appear in rules are not necessarily well-formed models in the original modelling
language. For instance, for the Production System language it may be useful to be able to specify
a pattern which contains a conveyor belt that has no outgoing connections. In the original lan-
guage this is not a well-formed model as each conveyor belt should have an outgoing connection
to either another conveyor belt or to a machine. In order for the pattern specification language
to be useful, these well-formedness rules should be relaxed. Secondly, a number of elements
have to be added to the metamodel. It should be possible, for example, to identify model ele-
ments across the LHS, RHS and NACs. This is typically done by augmenting the metamodel,
adding labels to entities in the LHS, RHS and NAC patterns. Thirdly, the data type of model
element properties should be modified as to allow the definition of constraints on properties as
well as actions to compute the new value of a property. These are the three main concepts of
RAMification: Relaxation, Augmentation and Modification. The authors of the paper describe
a semi-automatic process which a developer can follow to create a customized pattern language
with minimal effort, starting from the original metamodel of the language.

In the next section, we explore how RAMification is used to create a transformation language
specific to our example language. We do this specifically in the commercial tool MetaEdit+
and thus show the applicability of RAMification in practice, beyond its demonstration in the
research tool AToM?>.

Proc. GraBaTs 2012 4/12



Eg ECEASST

4 The Rule Editor

A rule editor is an interactive (in our case visual) environment for creating model transformation
rules. Thisis the first essential part of our implementation we will explain. The model trans-
formation system we want to construct consist of a number of rules, which can be applied to
a model. To make the rule-modelling environment as domain-expert-friendly as possible, these
rules should re-use the domain-specific visual notation of the elements to be transformed. Rules
consist of three parts: exaclty one left hand side (LHS), exactly one right hand side (RHS) and
zero or more negative application conditions (NACs). The LHS holds a pattern to indicate which
part of the model is to be matched. If the rule is tried and a match is found for the LHS, the
transformation engine will also try to find a match for the NACs. If a match for one of the NACs
is found, the rule will not be executed. If no NAC match can be found, the rule will rewrite
the model by replacing the elements found by matching the LHS by the the corresponding ele-
ments described in the RHS. In general, a transformation rule can transform elements present in
the LHS of the rule to elements of aribitrary modelling languages. These are called exogenous
transformations. In this paper, we restrict ourselves to the modelling of operational semantics
which merely updates the state of a model. Hence, only elements of the modelling language we
are creating semantics for will appear in rules. The transformations used are thus endogenous
and in-place. Note that our technique also works for exogenous transformations.

The rule editor makes use of the decomposition capabilities of Met aEdit+. An object of one
metamodel can, in Met aEdit+, be decomposed into a graph conforming to another metamodel.
This enables us to create a layered structure for graph transformation models. Figure 1 depicts
a model of a graph transformation language. We will focus on the particular case of (layered)
graph transformations (or, if they are used to define languages, grammars). A transformation has
a name and consists of a number of rules. The rule objects decompose into graphs conforming
to the rule metamodel, which consists of the three elements mentioned above: one LHS, one
RHS and zero or more NACs. A rule also has a name and a precedence, which is a positive
integer. The precedence defines layers in the transformation. The transformation will, while it
is executing, choose a rule at random from the currently executing layer. Once none of the rules
in the current layer can be executed, the execution of rules proceeds to the next layer. As we
wish to use model transformation for simulation (and hence is in principle non-terminating), our
semantics loops back to the first layer once no more rules can be fired in the last layer. The
LHS and NAC objects of a rule decompose into graphs conforming to the pre-condition pattern
metamodel. The right hand side object of a rule decomposes into a graph conforming to the post-
condition pattern metamodel. We create these metamodels starting from the original metamodel
and apply RAMification on them. In particular, these are the steps we took to create the modified
versions of the metamodel:

1. First, make two copies of the original metamodel: one for the pre-condition pattern lan-
guage (NAC and LHS) and one for the post-condition pattern language (RHS). When we
refer to “the metamodel” in the next steps, we mean one of these copies and not the original
metamodel.

2. Relax the constraints on the metamodel’s well-formedness. A rule often only matches a

5/12 Volume 54 (2012)



Adding Rule-Based Model Transformation to MetaEdit+ Eﬁ

Transformation

name: string

*

*

Rule

name: string
precedence: int

*

* *

NACs|* LHS |1 RHS | 1
PreConditionPattern PostConditionPattern
condition: string action: string
L 4 L 4
Element_LHS Element_ RHS
GG_Label: int GG_Label: int

Figure 1: Structure of a transformation. Adapted from [KMS™10].

part of a model and this may not be a well-formed model conforming to the original meta-
model. It is also possible for abstract superclasses to appear in rules, which is impossible
in the original modelling language. For these abstract classes, a default visual concrete
syntax is created which enables the modeller to create them in patterns.

3. Append the suffix _LHS (pre-condition pattern) or _RHS (post-condition pattern) to the
class names of the objects and relationships.

4. Add a property called GG_Label of type “Number” to each object and relationship. This
property is used by the graph matcher to identify nodes across the different parts of a rule.

5. Append the suffix _LHS (pre-condition pattern) or _RHS (post-condition pattern) to each
property of an object or a relationship and change its datatype to “String”. The properties
now define a condition (pre-condition) or an action (postconsition pattern) instead of an
actual value. These strings are, in this case, Python executable code that has to evaluate to
a Boolean value in case of a condition, or to the new value of the property in case of an
action.

6. Add a property called “constraint” (pre-condition pattern) or “action” (post-condition pat-
tern) to the metamodel. These represent, respectively, the condition that has to be satisfied
before a rule can be executed and the action that has to be taken after the rule has executed.

In order to make simulation possible, the original metamodel has to be modified as well. As the
layered architecture of the transformation gives priority to layers with a lower precedence value,
mechanisms to ensure fairness have to be implemented. This is achieved by adding properties to
objects that are modified by rules. These properties can be checked in the NAC(s) or LHS of a

Proc. GraBaTs 2012 6/12



Eg ECEASST

rule: only when a particular value is found can the rule be executed. To disable the rule, the RHS
sets the property to anything else than that value. In our example transformation, for instance,
we have added a “moved” property to the “Operator” object which has to have the value 0 in
order for the rule “MoveOperator”” (which moves an operator from one machine to another one)
to be applied. The RHS sets the value of this property to 1 which effectively disables the rule,
preventing the rule from executing continuously. The top layer of our example transformation
consists of rules that set these properties back to their initial values so all rules become enabled
again. Thus, each pass through all the rules only considers each match for each rule once and
fairness is achieved.

The rule editor has to be constrained in a way such that only valid rules can be created. While
both the pre- and postcondition pattern languages allow the instantiation of (originally) abstract
classes, a constraint has to be defined on the RHS of rules, disallowing instances of abstract
classes to be instantiated without a corresponding instance (i.e. with the same GG _Label) in the
LHS. Otherwise, the execution of a rule could attempt to instantiate an instance of an abstract
class, which is prohibited in the original language. In the case where a corresponding instance
exists in the LHS, the execution of the rule would match and rewrite a concrete subclass in the
model which is being transformed, which is a valid operation.

Note that while in our prototype tool AToMPM [Manl12], we perform RAMification fully
automatically, the RAMification described in this paper was done manually inside Met aEdit+.

5 Architecture

In this section, additional elements present in MetaEdit+ or implemented in Python that are
important to our solution will be discussed. In Figure 2 an overview of the architecture of our
solution is shown. This is a client-server architecture: the transformation engine acts as the
server, MetaEdit+ as the client.

5.1 Python: Abstract Syntax Graph (ASG)

An abstract representation of Met aEdit+ models was created in Python. This component has
two functions: it provides a data structure to export models to using the Met aEdit+ exporters,
and it acts as an abstraction layer for the SOAP API. All methods defined on this structure make
use of the SOAP API to reflect changes visually in the MetaEdit+ model. These classes are
as generic as possible. It is therefore possible to export any type of Met aEdit+ model to this
Python structure.

5.2 MetaEdit+: API and Generators

The SOAP API of MetaEdit+ is heavily used in our solution. It provides methods to query
and update models, which are used by the ASG component in Python.

The generator editor facility of MetaEdit+ was used to create two types of generator: one for
models, and one for rules. As we saw in Section 4, a rule consists of exactly one LHS, zero or

7/12 Volume 54 (2012)



Adding Rule-Based Model Transformation to MetaEdit+ Eﬁ

MetaEdit+
Meta-Model |- BﬁM»'fX-------««»| Rule Meta-Model |
T<<conforms to>> <<conforms to>>
Model |- - ---- ---- m
(R
queryl Tmodify : :
SOAP API
reply A create :
call \ Python
jm———
\ v
....................... compile o
Abstract Syntax T-Core Graph
<«
Graph modify
Tmodify
sompile »| T-Core Rule

Figure 2: Architecture, including calls and relations between different components.

more NACs and exactly one RHS. These components of a rule are, like models, mapped to the
ASG structure in Python.

5.3 T-Core: Graph Rewriting

T-Core is a library of graph transformation primitives [SV10]. It is used in conjunction with a
scheduling language, which in our case is Python. We only need a small subset of T-Core: the
ARule (Atomic Rule), which chooses one match of the set of all matches (matching the LHS,
considering the NACs) and transforms the LHS to the RHS. Before T-Core can be used, the fol-
lowing challenges have to be dealt with.

T-Core has its own data structures for graphs and rules. A compiler was built to compile the
ASG representation into a T-Core graph (for models) or a T-Core rule (for rules).

To compile an ASG of a MetaEdit+ model, the compiler iterates over all nodes in the ASG
twice. During the first pass, it adds all nodes to the graph. This includes both object nodes and
relationship nodes. When adding a node, it copies all properties of the source node to the target
T-Core node and adds an attribute to the T-Core node which will be used to identify it in the
source ASG. This attribute will be used when T-Core has executed a rule on its graph representa-
tion, as the changes have to be propagated back to the ASG (see Section 6). It should be ignored
by T-Core in the matching phase as it is not a property of the corresponding object in the model.
T-Core provides a mechanism to achieve this by naming the property in a particular way. During
the second pass, edges are added from relationship nodes to their source and target nodes. These
are not present in the source graph, but are needed by T-Core.

Proc. GraBaTs 2012 8/12



Eg ECEASST

Compiling a rule is almost identical. First, a T-Core rule object is instantiated. Then, the LHS,
RHS and NACs are compiled as outlined above (as they are represented by an ASG as well,
since they are a special kind of model written in the modelling language) and added to the rule.
However, an extra step has to be taken for the attributes of these nodes. In the LHS, RHS and
NACs, T-Core expects the properties to be functions. Properties in the LHS and NACs have to
return a Boolean value, properties in the RHS have to return a value which corresponds to the new
value of that attribute. The strings that are given by the modeller for these properties are wrapped
in functions that evaluate the string as Python code and return the result of this execution. The
pattern condition for the LHS as well as the pattern action for the RHS are wrapped similarly.
As both the model and rules are now represented as T-Core graphs, the rules can be executed.

6 Executing Rules

We now have all elements needed to create a set of rules in MetaEdit+ and execute them on
a model. This section explains how a rule is applied on a model. We start by creating a rule in
MetaEdit+, then export it to Python. There, it will be compiled to T-Core together with an
exported model. T-Core will rewrite its graph and report back the changes, which will be used
to modify the ASG accordingly.

6.1 Creating The Rule

We will consider the moving of an operator from one machine to another as an example rule.
This rule is one of the rules that define the semantics of our example production system lan-
guage. It contains all of the functionality we want to demonstrate but is still basic enough to be
able to explain the general principles involved.

Figure 3 depicts the rule as it appears in the generated Met aEdit + editor. An operator in our
language can be connected to either an assembler, a quality control machine or a repair machine.
All three of these machines inherit from the processor abstract superclass. The LHS of the rule
defines what should be matched: two processors, one of which the operator is connected to. A
condition for the “moved” property, states that it should be equal to 0. As we do not want two
operators connected to the same machine, we also define a NAC. In the NAC, the processor we
want to move to (with GG_Label = 4) has an operator connected to it. By defining this NAC,
we make sure that whenever the rule is executed no operator is connected to this processor. The
RHS defines what the matched subgraph of the LHS should look like after executing the rule.
Here, the relationship between the operator and the original processor has been removed, while
a new one is created between the operator and the new processor. The “moved” property of the
operator is set to 1, which ensures this rule is only executed once until it is reset back to 0.

6.2 Compiling and Executing The Rule

As explained in Section 5.3, the model and the three parts of the rule are compiled to T-Core
structures. It is important to point out that subtype matching is used. Without subtype matching,
the moving of an operator would have to be split into several rules, to include every possible

9/12 Volume 54 (2012)



1] _> 00T _® __ woys ] deus [#] E@ST_..Q__E’._UEU« & _> % 00T _® : moys [ deus [4] or@or u.:u__ 2UON MDY (] _> 2L00T fmu : moys [] deus [A] 1@ 0T u.:u: 3UON BAIDY
< [l < 2 (M < |01 < [E3 < ([ES
~ -~ ~
uopae
108830014 Jossa%01d i=shsuononpold | 3dAy ydeig uogipuad uonipuoy
0 1 anes, Fpadoig 1sAsuoninpald | adAy ydeso J— Jr— =}sdsuononpald | 2dAy ydeas
105530014 108533014 aney | Auadoy o L aney|  Apadoyg
- 0 L
+ * G imeRdosupen T - < » ~
SHY UnDRULpE | % \ﬁ [ < _ Fy
P TR © SHT Jcesdosupew  § -z SHT oyesdpaupen |
SHY PNPOIGPILSIUL — 7 SHT LnoRuLpey | 2 7 SHT UnguLpep |
- mImJ_me_au‘:__n.u - SHT Jojelausg g SHT Jojeizuzg g
- SHTAPOg 1 % — SHT 1npo.gdpaysiy —— MM — SHT 1npoigpausily -
= — . B ASAUOD O SHT ¥Pgu0A3AU0D [
= (4 O ~ SHY ™ Ja)quizssy SHT Y=g.0
I — z O SHT Apog: = — ¥ O SHT Apog: =
7 - T T - v SHT Jajquassy [&] ~ - SHT Jajquassy [ ]
— ] S [AE[E e m = - [Y] e T e e N e T | e w[AEE o e == - Y]
(X B0% %[0 PGk OR BRI LR X002+~ |Gk 68
dgH jewd saddl meif pp3 ydedd dsH jewsoy sadAl mal pp3 yded dsH jewso] sadAT  meil 3p3  yded
T @ = | 7T TI0E ‘€2 43qwinaq ' isHY weisAsucranpod 3 S — TOTL TI0Z '€ 43qwiaa3Q sSHT wasssuonanpoud Zh | (oo [ 5 | = Z0°TT 'TTO0Z ‘€2 43qwian2q " iSHT wassdsuonanpolg Jhy
X = | T = | | = = |

Adding Rule-Based Model Transformation to MetaEdit+

10/12

Figure 3: Example rule: operator moving from one processor to another. From left to right:

NAC, LHS and RHS.

Proc. GraBaTs 2012



Eg ECEASST

combination of processor classes. This would lead to an explosion in the number of rules. T-Core
supports subtype matching: a list of subtypes for each type can be passed to T-Core. To execute
the rule, the compiled rule (which is an ARule object) is given the T-Core representation of the
model. T-Core will try to match the LHS and then choose one of the matches at random in case
there is more than one. This randomness is controlled through the seeding of the internal random
number generator of T-Core which ensures identical results (for experiment repeatability) when
the transformations are run multiple times. Then, it will perform the necessary operations as
defined by the RHS of the rule on this match. Internally, it changes its own representation of
the model, and reports back a list of changes (an “edit script”). These changes include, but are
not limited to, the changing of attributes, the creation or removal of nodes and the creation or
removal of edges.

6.3 Modifiying The ASG

The list of changes made to the T-Core graph is subsequently used to modify the original ASG
of the model. In the compilation process of the ASG, we made sure the nodes in the T-Core
graph can be linked back to their original ASG nodes. This makes it possible to perform exactly
the same changes to the ASG as were made to the T-Core graph which ensures both graphs
represent the same model. In addition, the operations that change the ASG propagate these
changes through the SOAP API to the original model in MetaEdit+, which results in visual
feedback.

7 Conclusion and Future Work

In this paper, we have shown how to add operational semantics to languages created in MetaEdit +.
First, a rule editor was created in Met aEdit+ which allows us to visually create transformation
rules which are combined in a (layered graph) transformation model. The transformation model
was then exported to Python, where it can be executed on an exported MetaEdit+ model us-
ing T-Core as a backend. The execution of a graph transformation results in a series of graph
rewritings which visually propagate to the original Met aEdit + model by using the SOAP API

of MetaEdit+.

Future work is outlined below.

e Denotational Semantics of MetaEdit+ Languages: In this paper, we have added op-
erational semantics to a (production system) modelling language. Further research will
investigate adding denotational semantics to languages. The difference with the work de-
scribed in this paper is that multiple metamodels have to be combined. In the rule editor,
it should be possible to use concepts of the source language as well as the target language.

¢ Automatic RAMification of Meta-models in MetaEdit+: In MetaEdit+, metamod-
els of languages can be exported to and imported from XML. It should therefore be possi-
ble to automate the RAMification process of metamodels.

11/12 Volume 54 (2012)



Adding Rule-Based Model Transformation to MetaEdit+ Eﬁ

e Other Environments: The technique outlined in this paper could be used with other front-
and backends. An example of this would be to add model-to-model transformations to the
Eclipse Graphical Modelling Project?, using for example the very efficient graph rewriting
kernel GrGen.NET as backend.

Bibliography

[HSHO9]

[JABKOS]

[JBK10]

[KMS*10]

[LVO02]

[Man12]

[NNZ00]

[SV10]

[Syrl1]

B. Helms, K. Shea, F. Hoisl. A Framework for Computational Design Synthesis
Based on Graph-Grammars and Function-Behavior-Structure. ASME Conference
Proceedings 2009(49057):841-851, 2009.

doi:10.1115/DETC2009-86851

http://link.aip.org/link/abstract/ ASMECP/v2009/i49057/p841/s1

F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev. ATL: A model transformation tool.

Science of Computer Programming, Special Issue on Second issue of experimental
software and toolkits (EST) 72(1-2):31-39, June 2008.

E. Jakumeit, S. Buchwald, M. Kroll. GrGen.NET - The expressive, convenient and
fast graph rewrite system. STTT 12(3-4):263-271, 2010.

T. Kiihne, G. Mezei, E. Syriani, H. Vangheluwe, M. Wimmer. Explicit Trans-
formation Modeling. In Ghosh (ed.), Models in Software Engineering. Lecture
Notes in Computer Science 6002, pp. 240-255. Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-12261-3_23.

http://dx.doi.org/10.1007/978-3-642-12261-3 23

J. de Lara, H. Vangheluwe. AToM?: A Tool for Multi-formalism and Meta-
Modelling. In Kutsche and Weber (eds.), FASE’02. LNCS 2306, pp. 174-188.
Springer, Grenoble, France, April 2002.

R. Mannadiar. A Multi-Paradigm Modelling Approach to the Foundations of
Domain-Specific Modelling. PhD thesis, McGill University, June 2012.

U. Nickel, J. Niere, A. Ziindorf. The FUJABA environment. In ICSE’00. Pp. 742—
745. ACM, Limerick (Ireland), June 2000.

E. Syriani, H. Vangheluwe. De-/Re-constructing Model Transformation Languages.
Electronic Communications of the European Association of Software Science and
Technology 29, March 2010.

E. Syriani. A Multi-Paradigm Foundation for Model Transformation Language En-
gineering. PhD thesis, McGill University, 2011.

2 http://www.eclipse.org/modeling/gmp/

Proc. GraBaTs 2012 12/12


http://dx.doi.org/10.1115/DETC2009-86851
http://link.aip.org/link/abstract/ASMECP/v2009/i49057/p841/s1
http://dx.doi.org/10.1007/978-3-642-12261-3_23
http://www.eclipse.org/modeling/gmp/

	Introduction
	Running Example
	RAMification
	The Rule Editor
	Architecture
	Python: Abstract Syntax Graph (ASG)
	MetaEdit+: API and Generators
	T-Core: Graph Rewriting

	Executing Rules
	Creating The Rule
	Compiling and Executing The Rule
	Modifiying The ASG

	Conclusion and Future Work

