
Electronic Communications of the EASST
Volume 54 (2012)

Proceedings of the
7th International Workshop on Graph Based Tools

(GraBaTs 2012)

Visual Modeling and Analysis of EMF Model Transformations
Based on Triple Graph Grammars

Claudia Ermel, Frank Hermann, Jürgen Gall and Daniel Binanzer

12 pages

Guest Editors: Christian Krause, Bernhard Westfechtel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Visual Modeling and Analysis of EMF Model Transformations
Based on Triple Graph Grammars

Claudia Ermel1, Frank Hermann2, Jürgen Gall1 and Daniel Binanzer1

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
claudia.ermel@tu-berlin.de, juergengall@gmx.de, daniel.binanzer@freenet.de

2 Interdisciplinary Center for Security, Reliability and Trust, Université du Luxembourg
frank.hermann@uni.lu

Abstract: The tool HENSHIN is an Eclipse plug-in supporting visual modeling and
execution of rule-based EMF model transformations. This paper describes the re-
cent extensions of HENSHIN by a visual editor for triple graph grammars (TGGs).
The visual editor (called HENSHINTGG) supports a compact visualization of triple
rules in an integrated editor panel. Internally, triple graph rules are represented as
HENSHIN rules and can be simulated using the HENSHIN EMF model transforma-
tion engine. Our extension supports the automatic generation of forward translation
rules for transforming source into target models. A converter from HENSHIN TGG
rules to the graph transformation analysis tool AGG allows a systematic check for
conflicts of forward translation rules in AGG based on critical pair analysis.

Keywords: EMF, model transformation tool, triple graph grammar, Henshin

1 Introduction

Model transformations play an important role in model driven development. In graph transfor-
mation based approaches and tools, rules express basic transformation steps. In particular, triple
graph grammars (TGGs) [Sch94] are a formal technique to specify and reason about bidirec-
tional model transformations. Using graph triples, the relations of source and target models is
specified declaratively, by mapping the elements of a correspondence model to corresponding
elements of the source and target model. A TGG describes how consistent graph triples are de-
rived synchronously by applying triple rules. From such a TGG, so-called operational rules can
be derived automatically to perform unidirectional forward or backward model transformations.
TGGs have shown to be a suitable formal basis for model transformations and to reason about
properties such as correctness, completeness, or functional behaviour [HEGO10, EEHP09].

The paper presents the new, visual TGG modelling and analysis environment HENSHINTGG
that makes use of the existing formally founded EMF model transformation engine HENSHIN.
In contrast to existing TGG implementations [GHL12, ALPS11, BGH+05], HENSHINTGG
does not only specify and perform EMF model transformations by TGGs but generates for-
ward translation rules (synthesized from forward and source rules) according to [HEGO10]
and offers a converter to translate forward translation rules to the graph transformation analyzer
AGG [AGG12] in order to benefit from AGG’s critical pair analysis for conflict detection. Fig. 1
shows an overview of the overall workflow using the main tool features of HENSHINTGG.

1 / 12 Volume 54 (2012)

mailto:claudia.ermel@tu-berlin.de
mailto:juergengall@gmx.de
mailto:daniel.binanzer@freenet.de
mailto:frank.hermann@uni.lu


Visual Modeling of EMF Model Transformations Based on Triple Graph Grammars

1) import 
EMF models

Imports

3) draw 
triple rules

Rules

2) draw source 
models

Graphs

4) generate 
forward 

translation 
rules

FT Rules

Translated 
Graphs

7) execute 
FT rules

5) conflict 
analysis

Critical Pairs

6) add filter 
NACs

Figure 1: Workflow overview of using HENSHINTGG for EMF model transformation

HENSHIN is an Eclipse plug-in supporting visual modeling and execution of EMF model
transformations, i.e., transformations of models conforming to a meta-model given in the EMF
Ecore format.1 The transformation approach is based on algebraic graph transformation ac-
cording to the double pushout (DPO) approach [EEPT06] which are lifted to EMF model trans-
formation by also taking containment relations in meta-models into account [BET12, ABJ+10].

Structure of the Paper: We present our visual TGG editor in Sec. 2 and describe the genera-
tion of forward translation rules based on [HEGO10] in Sec. 3. An example for a conflict analysis
of forward translation rules converted to AGG based on critical pairs is presented in Sec. 4, while
Sec. 5 explains the automatic EMF model translation. In Sec. 6, we compare related approaches
and tools to our tool and conclude the paper with an outlook to future work.

2 The Visual TGG Editor

Using triple graph grammars [Sch94], models are defined as pairs of source and target graphs,
which are connected via a correspondence graph together with its embeddings into these graphs.
In this section, we review main constructions and results of model transformations based on
TGGs and introduce our visual TGG editor HENSHINTGG.

A triple graph G =(GS←sG−− GC −tG−→ GT ) consists of three graphs GS, GC, and GT , called source,
correspondence, and target graphs, together with two graph morphisms sG : GC → GS and tG :
GC→ GT . A triple graph morphism m = (mS,mC,mT ) : G→ H between triple graphs G and H
consists of three graph morphisms mS : GS → HS, mC : GC → HC and mT : GT → HT . A typed
triple graph G is typed over a triple type graph TG by a triple graph morphism typeG : G→ TG.

Example 1 (Triple Type Graph) Fig. 2 shows the type graph TG of the triple graph gram-
mar TGG for our example model transformation from class diagrams to database models. The
source component TGS defines the structure of class diagrams while in the target component
the structure of relational database models is specified. Classes correspond to tables, attributes
to columns, and associations to foreign keys. Morphisms starting at a correspondence part are
indicated by dashed arrows.

The HENSHINTGG editor uses EMF models as type graphs and EMF instance models con-

1 Note that we use the terms meta-model and model in this paper, which are called EMF model and model instance
in the EMF documentation, respectively.

Proc. GraBaTs 2012 2 / 12



ECEASST

TGS TGC TGT

Figure 2: Triple type graph for CD2RDBM as triple EMF model

1

2

3

Figure 3: Graphical user interface of the visual TGG editor

forming to the respective EMF models as typed (attributed) graphs2. The three EMF models in
Fig. 2 have been edited outside the visual TGG editor using the graphical GMF editor for EMF,
but any other EMF model editor or generator can be used as well. The morphisms are imple-
mented as references between the types of the three different EMF models. EMF models are
imported into the visual TGG editor which enables the use of previously produced EMF models.
The names of the three imported EMF models source, correspondence and target that comprise
the triple type graph, are shown in the top compartment Imports of the tree view 1 in Fig. 3.

Once a triple type graph is available (i.e., the three EMF models have been imported), triple
graphs typed over this type graph may be edited, e.g. for modifying inputs and intermediate

2 For more details on the formal correspondence of typed attributed graphs and EMF models see [BET12].

3 / 12 Volume 54 (2012)



Visual Modeling of EMF Model Transformations Based on Triple Graph Grammars

states when testing model transformations3. The visual TGG editor supports editing of triple
graph nodes and edges by offering the available types in the palette of the triple graph panel 2 .
Only triple graphs conforming to the triple type graph can be created. Moreover, only source
triple graph elements (colored in red) can be created and modified in the left-hand part of the
editor, correspondence graph elements (blue) in the center, and target graph elements (yellow) in
the right part. The separators between the different triple panels can be moved using the mouse.
Morphisms from correspondence to source and target elements are drawn as edges across the
separators. Fig. 3 shows a sample triple graph OrderDetails containing a complete source part
(the class diagram) but incomplete corresponding target and correspondence graphs.

(LS
trS ��

L LC
sLoo

trC ��

tL // LT )
trT ��

(RSR
tr ��

RCsR
oo

tR
// RT )

L
m ��

tr // R
n��(PO)

G t
// H

Figure 4: Triple rule (left) and triple transformation step (right)

Triple graphs can be generated by applying triple rules to the start graph. Triple rules syn-
chronously build up their source, target and correspondence graphs, i.e., they are non-deleting. A
triple rule tr (left part of Fig. 4) is an injective triple graph morphism tr = (trS, trC, trT ) : L→ R
and w.l.o.g. we assume tr to be an inclusion. Given a triple graph morphism m : L→ G, a triple
graph transformation (TGT) step G =

tr,m
==⇒ H (right part of Fig. 4) from G to a triple graph H

is given by a pushout of triple graphs. A grammar TGG = (TG,S,TR) consists of a triple type
graph TG, a triple start graph S =∅ and a set TR of triple rules.

C2T(cn:String)

SC2T(n:String)

A2C(n:String, t:String)

Figure 5: Some rules for the model transformation CD2RDBM (HENSHINTGG screenshots)

Example 2 (Triple Rules) The triple rules shown in Fig. 5 are part of the rules of the grammar
TGG for the model transformation CD2RDBM. In HENSHINTGG, triple rules are drawn in

3 Moreover, the triple graph editor can be used for resolving inconsistencies within a future extension of the tool to
model synchronization.

Proc. GraBaTs 2012 4 / 12



ECEASST

short notation, i.e. left and right hand side of a rule are depicted in one triple graph. Elements
which are created by the rule are labeled by ”++”. Rule CD2DB(see 1 in Fig. 3) synchronously
creates a class diagram together with the corresponding database. Analogously, rule C2T creates
a class with name “n” together with the corresponding table in the relational database. A subclass
is connected to the table of its superclass by rule SC2T. Attributes with type “t” are created
together with their corresponding columns in the database component via rule A2C.

The visual HENSHINTGG editor for triple rules consists of three panel parts like the visual
triple graph editor (see 3 in Fig. 3). But in addition to the triple graph editor, the rule editor
palette offers a green ”++” to mark elements as created (and to unmark marked elements if
necessary). Note that HENSHINTGG checks triple rules for consistency at editing time, i.e. if a
node is ”++”-marked, all incident edges are marked automatically, as well.

Figure 6: Triple rule C2T with NAC ClassesBeforeAssocs

HENSHINTGG supports negative application conditions for triple rules that forbid the pres-
ence of certain structures when applying a rule [EEHP09, GEH11]. A visual NAC editor can be
opened via the tree view and consists of a three-panel triple graph editor again. A rule may have
several NACs, the one to be shown in the visual NAC editor has to be selected in the tree view.
Fig. 6 shows rule C2T with an additional NAC that forbids the synchronous creation of a class
and a table if there are associations in the class diagram. The morphism from the rule to one of
its NACs is indicated by equal numbers for mapped nodes (in Fig. 6, the ClassDiagram node is
mapped to the NAC). Edges are mapped accordingly automatically. The rule palette entry Map-
ping supports the definition of a mapping from the triple rule to a NAC. Note that only unmarked
elements (without ”++”) can be mapped to NAC elements, a consistency property which is also
checked automatically by the editor.

A triple rule can be applied by clicking the button Execute Rule in the rule’s tool bar (the
upper right corner in Fig. 6), and selecting the graph the rule should be applied to. The result is
shown in the view of the selected graph.

3 Generation of Forward Translation Rules

From each triple rule tr, so-called operational rules can be automatically derived [Sch94] for
parsing a model of the source or target language (source and target rules) and for model transfor-
mations from source to target or backwards (forward and backward rules), as depicted in Fig. 7.

5 / 12 Volume 54 (2012)



Visual Modeling of EMF Model Transformations Based on Triple Graph Grammars

(LS
trS��

∅oo

��

// ∅)

��
(RS ∅oo // ∅)

source rule trS

(∅
��

∅oo

��

// LT )
trT ��

(∅ ∅oo // RT )

target rule trT

(RS
id��

LC
trS◦sLoo

trC ��

tL // LT )
trT ��

(RS RC
sRoo tR // RT )

forward rule trF

(LS
trS ��

LC
sLoo

trC ��

trT ◦tL // RT )
id ��

(RS RC
sRoo tR // RT )

backward rule trB

Figure 7: Derived operational rules of a TGG

According to [HEGO10], the extension of forward rules to forward translation rules is based
on additional Boolean attributes for all elements in the source component, called translation
attributes that control the translation process by keeping track of the elements which have been
translated so far. This ensures that each element in the source graph is translated at most once.

The algorithm for constructing forward translation rules from triple rules is as follows (see
[HEGO10] for its formal definition): For each triple rule tr, initialize the forward translation rule
trFT = trF by the forward rule trF . Add an additional Boolean attribute isTranslated to each
source element (node, edge or attribute) of trFT . In the left-hand side of trFT , for each source
element, the value of the isTranslated attribute is set to false if the element is generated by the
source rule trS of tr, otherwise it is set to true. In the right-hand side of trFT , the value of all
isTranslated attributes is set to true. For all source elements in NACs, the attribute isTranslated
is set to true as well.

Note that in contrast to forward translation rules, pure forward rules need additional control
conditions, such as the source consistency condition in [EEHP09], to ensure correct execu-
tions. In HENSHINTGG, forward translation rules are computed automatically. The translation
attributes for nodes and edges 4 are kept separately as an external pointer structure in order to
keep the source model unchanged. In the source graph editor panel of a forward translation rule,
all elements that are still to be translated are marked by a ”<tr>” tag.

Figure 8: Forward translation rule FT SC2T generated from triple rule SC2T

Example 3 (Forward translation rule) Fig. 8 shows the forward translation rule FT SC2T gen-
erated from triple rule SC2T. The Class node and its incident edge are marked by a ”<tr>” tag
as to be translated, since these model elements correspond to the model elements generated by
the source rule of triple rule SC2T.

4 An extension to mark attributes of nodes separately is under way.

Proc. GraBaTs 2012 6 / 12



ECEASST

4:Attribute

name=“name“

type=String

value=n

1:Class

isTranslated=true

2:Class

isTranslated=false

3:parentEdge

isTranslated=false

5:ClassDiagram

isTranslated=true
6:CD2DB 7:Database

8:Table

4:Attribute

name=“name“

type=String

value=n

1:Class

isTranslated=true

2:Class

isTranslated=true

3:parentEdge

isTranslated=true

5:ClassDiagram

isTranslated=true
6:CD2DB 7:Database

8:Table9:CT 9:CT

:CT

RHSLHS

Figure 9: Rule FT SC2T in abstract HENSHIN syntax

Forward translation rules can be edited in a restricted visual triple rule edtior which allows
for a manual extension of additional NACs. All other rule editor operations are blocked because
forward translation rules are generated automatically and should not be changed manually. Fig. 9
shows the abstract syntax of the forward translation rule FT SC2T from Fig. 8, as it is represented
in HENSHIN, where left-hand and right-hand sides of a rule are kept separately, with morphisms
inbetween. We can see how the translation attributes of source elements are switched from false
to true.

For matching, we internally keep two tables (hashmaps) “TranslatedNodes” und “Translated-
Edges” based on the IDs of the elements of an EMF instance model. These tables are constructed
and updated dynamically during transformation execution. A match is valid if for each matched
element we have one of the following cases: 1) its translation attribute is true and its ID is
present in the corresponding table of translated elements, or 2) its translation attribute is false
and its ID is not present in the corresponding table of translated elements.

4 Conflict Analysis Based on AGG

According to [HEGO10], a forward translation sequence G0 =
tr∗FT==⇒ Gn is called complete if Gn is

completely translated, i.e. all translation attributes of Gn are set to true. A model transformation
based on forward translation rules with NACs (consisting of a source graph GS, a target graph

GT , and a complete forward translation sequence G0 =
tr∗FT==⇒ Gn) is terminating if each forward

translation rule changes at least one translation attribute from false to true; it is correct if each
forward translation results in a triple graph that can be generated by triple rules, and it is complete
if for each source graph there is a forward translation sequence that results in a triple graph that
can be generated by triple rules.

However, not all terminating forward translation sequences are complete. A counter example
is a forward translation rule sequence applied to the triple graph TwoClasses consisting of a
parent class named Client and a subclass named PremiumClient connected to class Client by a
parent edge (see source graph in Fig. 10).

The incomplete forward translation sequence is as follows: FT CD2DB; FT C2T (applied
to class PremiumClient); FT C2T (applied to class Client). The sequence is terminating (no
forward translation rule can be applied any more), but the result after applying this sequence is a
triple graph where not all translation attributes are set to true, i.e. not all source model elements
have been translated: the parent edge could not be translated.

7 / 12 Volume 54 (2012)



Visual Modeling of EMF Model Transformations Based on Triple Graph Grammars

Figure 10: Incomplete forward translation sequence: parent edge could not be translated

In HENSHINTGG, elements that could not be translated are reported as error message in
the triple graph panel showing the (partial) translation result (see Fig. 10). This allows the
user to reason about possible conflicts between rule applications. The reason why the parent
edge was not translated by the given forward translation sequence is a conflict between rule
FT C2T (applied to class PremiumClient) and FT SC2T which could not be applied to class
PremiumClient after the application of rule FT C2T.

In order to ensure completeness in the general case, the execution of model transforma-
tions may require backtracking (not implemented in HENSHINTGG). However, as shown
in [HEOG10], backtracking is not necessary, if the significant critical pairs between transfor-
mation rules are strictly confluent and the system is terminating, i.e., a system satisfying this
condition does not have to be confluent in the general sense. HENSHINTGG implements a
converter from triple rules in HENSHIN to the graph transformation analysis tool AGG, which
provides a critical pair analysis engine. A critical pair is a conflict between two rules in minimal
context and it is significant, if the overlapping graph can be embedded in a possible intermediate
state of a model transformation sequence. In particular, it is not significant if a fragment in the
source component cannot be embedded into a valid source model due to language constraints.

Figure 11: Critical pair between rules FT C2T and FT SC2T computed by AGG

Proc. GraBaTs 2012 8 / 12



ECEASST

Fig. 11 shows the (only) critical pair between the rules FT C2T and FT SC2T as depicted by
the AGG critical pair analyzer. In the window to the right, the critical overlapping graph of both
rules’ left-hand sides is shown, and it is indicated that we have a change-use-attr conflict, since
both rules want to access and change the isTranslated attribute of the subclass.

In order to avoid the conflict shown in Fig. 11, the easiest way is to add a NAC to rule FT C2T
that forbids its application to classes which have a parent class. According to [HEGO10], such
additional conflict-avoiding NACs are called filter NACs and can be generated automatically.
Note, however, that the generation of filter NACs is not yet supported by HENSHINTGG.

5 Performing Model Transformation in HENSHINTGG

Using a set of confluent forward-translation rules, we can be sure to always get a complete
forward translation sequence, i.e., all elements are translated and the result is unique. The upper
part of Fig. 12 shows rule C2T, now extended by a filter NAC. With this extension, the set of
forward-translation rules now is confluent, since there are no critical pairs any more.

Execute Forward Translation

Figure 12: Rule FT C2T with filter NAC (top) and input graph TwoClasses (bottom)

HENSHINTGG supports the automatic forward translation of a given source model by offering
a button Execute Forward Translation in the tool bar of the EMF source model to be translated
(see the bottom part of Fig. 12). Having pressed the button, the forward translation rules are
executed in arbitrary order; confluence of the transformation system guarantees a unique result.
The resulting target triple graph is shown in the same window as the source model since the
translation is performed in-place. Fig. 13 shows the target triple which is the result of translating
the source model in Fig. 12. In addition, the sequence of applied forward translation rules is
shown to the modeller in the message window. For debugging purposes, also single forward
translation rule applications can be executed, analogously as for triple rules.

9 / 12 Volume 54 (2012)



Visual Modeling of EMF Model Transformations Based on Triple Graph Grammars

Figure 13: Result of the Forward Translation of Source Model TwoClasses

6 Related Work and Conclusion

General model transformation tools such as ATL [JABK08] and MOMENT2-MT [MOM12]
are usually used to perform in-place model transformations and do not restrict the structure of
transformation rules. Thus, they do not ensure TGG-specific properties like preservation of
source models [Sch94] and syntactical correctness and completeness [EEHP09]. Moreover, the
forward and backward transformations are manually specified and not generated from a single
specification. While ATL and MOMENT2-MT use textual specification techniques, graph
transformation tools like HENSHIN (in-place) [ABJ+10] and FUJABA [Fuj12] offer the visual
specification of transformation rules, i.e., a form of visual programming interface.

In addition to HENSHINTGG, further TGG tools based on EMF are available. The TGG in-
terpreter [GK10] provides a feature to define OCL expressions as rule conditions, while formal
application conditions cannot be specified. However, the formal results concerning correctness
and completeness [EEHP09] are not available for systems with OCL conditions. The TGG tools
MOTE (model transformation engine) [GW09] and eMoflon [ALPS11] perform a compilation
to the FUJABA tool suite [BGH+05, Fuj12] for the execution of model transformations. While
eMoflon supports the specification of TGGs with negative application conditions (NACs), this is
not the case for MOTE. MOTE offers certain optimization strategies concerning efficiency. Since
correctness cannot be ensured for optimizations, the tool executes dynamic run-time checks
to validate that a model transformation sequence was executed correctly [GHL12]. Moreover,
MOTE uses a relaxed notion of correspondences for triple graphs, where correspondence nodes
may link an arbitrary numer of source and target nodes [GHL12].

In order to improve efficiency of TGG tools, suitable static and dynamic conditions have been
studied that allow to completely avoid backtracking. Klar et al. use a restricted class of TGGs for
which they describe explicit dynamic conditions based on pre-checking contextual edges when
translating a node [KLKS10]. Lauder et al. leverage these restrictions on TGGs and introduce
the notion of precedence TGGs, where rules are required to form a partial order concerning the
execution [LAVS12]. However, these conditions are not checked statically. Giese et al. present
efficiency conditions for a restricted class of TGGs [GHL12], where, e.g., each forward rule has
to translate at least one source node and may not be in conflict with another rule via a critical
pair. The first condition excludes examples where the translation of a single edge or attribute is

Proc. GraBaTs 2012 10 / 12



ECEASST

handled separately by one rule [HEEO12], and the second condition excludes the well-studied
case study on the object relational mapping [EEHP09] used in this article. The tool was
extended by a prototypical export [GHL12] of so-called bookkeeping rules to AGG for conflict
analysis, but it does not provide re-import and evaluation.

HENSHINTGG is based on the formal definitions for TGGs [Sch94, EEHP09, HEGO10]
and supports conflict analysis via the converter to AGG. The explicit marking of edges over-
comes the restriction in [GHL12] that rules are required to create at least one node. The
implementation of a re-import feature for displaying and evaluating the critical pairs is work in
progress. HENSHINTGG allows the user to manually use the analysis and optimizations tech-
niques presented in [HEGO10] in order to improve efficiency. The automated generation of
filter NACs [HEGO10] can be implemented as a direct extension and is future work. A further
line of future work is the extension of the tool to support also backward transformations, model
synchronization [HEEO12], critical pair analysis directly in the HENSHIN GUI, and the import
of EMF instances. Moreover, we plan to use HENSHINTGG within an industrial case study
for software translation for satellite systems and in further case studies to evaluate the results
concerning correctness and efficiency.

References

[ABJ+10] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer. Henshin: Advanced Con-
cepts and Tools for In-Place EMF Model Transformations. In Proc. 13th Int. Conf.
on Model Driven Engineering Languages and Systems (MoDELS’10). LNCS 6394,
pp. 121–135. 2010.

[AGG12] TFS-Group, TU Berlin. AGG. 2012. http://tu-berlin.de/tfs/agg.

[ALPS11] A. Anjorin, M. Lauder, S. Patzina, A. Schürr. eMoflon: Leveraging EMF and Pro-
fessional CASE Tools. In INFORMATIK 2011. Lecture Notes in Informatics 192,
p. 281. Gesellschaft für Informatik, 2011. Extended abstract.

[BET12] E. Biermann, C. Ermel, G. Taentzer. Formal Foundation of Consistent EMF Model
Transformations by Algebraic Graph Transformation. Software and Systems Model-
ing (SoSyM) 11(2):227–250, 2012.

[BGH+05] S. Burmester, H. Giese, M. Hirsch, D. Schilling, M. Tichy. The Fujaba Real-Time
Tool Suite: Model-Driven Development of Safety-Critical, Real-Time Systems. In
Proc. 27th Int.. Conf. on Software Engineering (ICSE). 2005.

[EEHP09] H. Ehrig, C. Ermel, F. Hermann, U. Prange. On-the-Fly Construction, Correctness
and Completeness of Model Transformations based on Triple Graph Grammars. In
Proc. 12th Int. Conf. on Model Driven Engineering Languages and Systems (MOD-
ELS’09). LNCS 5795, pp. 241–255. Springer, 2009.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs in Theor. Comp. Science. Springer, 2006.

11 / 12 Volume 54 (2012)

http://tu-berlin.de/tfs/agg


Visual Modeling of EMF Model Transformations Based on Triple Graph Grammars

[Fuj12] University of Paderborn. Fujaba Tool Suite. 2012. http://www.fujaba.de/.

[GEH11] U. Golas, H. Ehrig, F. Hermann. Formal Specification of Model Transformations by
Triple Graph Grammars with Application Conditions. ECEASST 39, 2011.
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/archive

[GHL12] H. Giese, S. Hildebrandt, L. Lambers. Bridging the gap between formal seman-
tics and implementation of triple graph grammars. Software and Systems Modeling,
pp. 1–27, 2012. http://dx.doi.org/10.1007/s10270-012-0247-y.

[GK10] J. Greenyer, E. Kindler. Comparing relational model transformation technologies:
implementing Query/View/Transformation with Triple Graph Grammars. Software
and Systems Modeling (SoSyM) 9(1):21–46, 2010.

[GW09] H. Giese, R. Wagner. From model transformation to incremental bidirectional model
synchronization. Software and Systems Modeling (SoSyM) 8(1), 3 2009.

[HEEO12] F. Hermann, H. Ehrig, C. Ermel, F. Orejas. Concurrent Model Synchronization with
Conflict Resolution Based on Triple Graph Grammar. In Proc. Intern. Conf. on Fun-
damental Aspects of Software Engineering (FASE’12). LNCS. Springer, 2012.

[HEGO10] F. Hermann, H. Ehrig, U. Golas, F. Orejas. Efficient Analysis and Execution of
Correct and Complete Model Transformations Based on Triple Graph Grammars. In
Proc. Int. Workshop on Model Driven Interoperability (MDI’10). Pp. 22–31. ACM,
2010. http://doi.acm.org/10.1145/1866272.1866277.

[HEOG10] F. Hermann, H. Ehrig, F. Orejas, U. Golas. Formal Analysis of Functional Behaviour
of Model Transformations Based on Triple Graph Grammars. In Ehrig et al. (eds.),
Proc. Int. Conf. on Graph Transformation (ICGT’ 10). LNCS 6372, pp. 155–170.
Springer, 2010.

[JABK08] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev. ATL: A model transformation tool.
Science of Computer Programming 72(1-2):31 – 39, 2008.

[KLKS10] F. Klar, M. Lauder, A. Königs, A. Schürr. Extended Triple Graph Grammars with
Efficient and Compatible Graph Translators. In Graph Transformations and Model
Driven Enginering. LNCS 5765, pp. 141–174. Springer, 2010.

[LAVS12] M. Lauder, A. Anjorin, G. Varró, A. Schürr. Bidirectional Model Transformation
with Precedence Triple Graph Grammars. In Proc. of the 8th European Conf. on
Modelling Foundations and Applications. LNCS. Springer, 2012. Accepted.

[MOM12] University of Leicester. MOMENT2-MT. 2012. http://www.cs.le.ac.uk/people/
aboronat/tools/moment2-gt/.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Tin-
hofer (ed.), WG94 20th Int. Workshop on Graph-Theoretic Concepts in Computer
Science. LNCS 903, pp. 151–163. Springer, 1994.

Proc. GraBaTs 2012 12 / 12

http://www.fujaba.de/
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/archive
http://dx.doi.org/10.1007/s10270-012-0247-y
http://doi.acm.org/10.1145/1866272.1866277
http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt/
http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt/

	Introduction
	The Visual TGG Editor
	Generation of Forward Translation Rules
	Conflict Analysis Based on AGG
	Performing Model Transformation in HenshinTGG
	Related Work and Conclusion

