Electronic Communications of the EASST

Volume 10 (2008)

Proceedings of the
Seventh International Workshop on
Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

On a Graph-Based Semantics for UML Class and Object Diagrams
Anneke Kleppe, Arend Rensink

16 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122



http://www.easst.org/eceasst/

@ ECEASST
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Abstract: In this paper we propose a formal extension of type graphs mations
that are commonplace in the UML and have long proven theittwiarthat context:
namely, inheritance, multiplicity, containment and tHe=liWe believe the absence
of a comprehensive and commonly agreed upon formalisatidhese notions to
be an important and, unfortunately, often ignored omiss&ince our eventual aim
(shared by many researchers) is to give unambiguous, faemahntics to the UML
using the theory of graphs and graph transformation, inghjger we propose a set
of definitions to repair this omission. With respect to poexd work in this direction,
our aim is to arrive at more comprehensive and at the samestim@er definitions.

Keywords: UML, Class Diagram, Type Graph, Instance Graph, Graph Cainst

1 Introduction

Software industry is showing an increasing interest in rirddgen development. Indeed, we
have little doubt that the future lies in higher-level madial take the place of code, in all but the
most performance critical domains. With this trend, howgtree quality of those models is of
increasing importance. By this we do not mean the qualithefiroduct being modelled (which
obviously is the final consideration) but rather of the mbdglparadigm. Good models may
not guarantee good software, but on the other hand, a badgaouis, inconsistent or unclear)
model can never be expected to yield a good end product, ficylar if the transformation from
model to software is largely automatic.

The quality of models is determined by many aspects, amonfgelieve precision consis-
tencyand completenesto be paramount. The precision of a model corresponds tcattedf
ambiguity, or in other words, the degree to which the moddll lvéi understood in exactly the
same way by different persons and tools during the softwaveldpment process. Consistency
formally means the existence of an (i.e., at least one)nestaor implementation, of the model,
whereas completeness means the inclusion of all relevpatts or (in other words) the ability
to predict the behaviour of the system under all circumsanc

The above “quality criteria” have a clear, universally agreipon interpretation in the world
of mathematics. To make the benefits of the mathematicalpirg@tion available for everyday
use in the world of software modelling, however, it is imgeethat there be a translation from
the latter to the former; in other words, a formal semantitghe modelling language. For
instance, it is commonly agreed that a natural interp@tatf (UML-type) diagrams is in terms
of graphs— essentially, just nodes with connecting edges. Indeedyraathors use UML class
(and object) diagrams claiming that they are represemisiid type graphs. Unfortunately, few
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provide an actual formal underpinning of this claim, or wileey do, the semantics covers only
a relatively small part of UML; for instanceBELT04, LBET07, KGKK02, TR0Y. The most
comprehensive isfFV06], but even there such basic notions as multiplicities argsimg. We
see the absence of a more complete semantics as an impodaegaettable omission, although
from a purely formal standpoint, there is little challengegoroviding the necessary definitions.
The aim of this work is to bridge the gap between pure formabsd practicality.

Like the papers cited above, in this paper we distinguishtytpe and instance levels, or in
other words, type graphs and instance graphs. We see a tgph gs an intensional defini-
tion of a set of instance graphs, namely, those instancehgrigy which it is a correct type.
Type graphs are then enriched with constraints that captitte concepts such as bi-directional
associations, multiplicities, collection types, inhanite, redefinition of associations, and com-
position relationships. In this, we have based ourselveh®iverbal) descriptions in the UML
2.0 specification@QMGO095.

In searching for the aforementioned balance between gityplnd expressiveness of the
semantics, we have used the following guidelines:

e Instance graphs should be as simple and straightforware aamwmake them, if necessary
at the price of increasing their sizes. In other words, wlikege is a choice between
enriching the formalism (resulting in more concise but mooenplex graphs) or using
larger (sub-)graphs to encode complexity, we have tendelddose in favour of the latter.

e Type graphs should be as close to instance graphs as we cantinesk; the number of
special features or decorations should be minimised.

We have achieved this by using the concept gfaph constraint which is essentially a
template for a logical formula on top of an ordinary (typeaygn.

The remainder of this paper is structured as follows: aftewiding the basic definitions to
set the stage in Sectid) we discuss the graph constraints in SeciorWe consider these to
be the heart of our contribution. In Sectidrwe relate our constraints to the standardised UML
concepts. Finally, in the conclusion (Sectinwe come back to the above considerations and
re-evaluate our choices.

Unfortunately, it is not possible to include the full set efiehitions into this paper. A complete
version can be found irkR08].

2 Basic concepts

Names and namespaces.UML is a visual language; its “sentences” are diagrams. Hewea
major part of any diagram is still text, and so we need corwastfor visualising text inside dia-
grams. For this purpose, we define a satleftifiers 1D consisting of anamefrom a predefined
universeName and anamespacérom a setNS defined as follows.

¢ An identifieris a pair(ns name of a namespacesand a nam@ame

e There is aoot or topnamespacg € NS

e For everynse NSandnamec Name the identifier(ns name is again a namespace.
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To visualisean identifier we use a well-known notation, which is less carabme than the
angular brackets: the name space and name are separatetbhyaadithe top namespace is
omitted altogether. Thugns name is actually writtenrnsname

For instance, the identifi@rname.space consists of the namgpace in the namespacgname,
which itself is an identifier with namespase&and namename. The identifiera, finally, consists
of the name in the top name space.

Signatures and algebras. For our definition of model we use the notion of attributedetyp
graph, as defined irE[PT04. The ingredients of this definition that are important hare:

e A collection ofdata sorts Sortwhich are in fact identifiers (hen&ortC ID)
e A collection ofcarrier sets Datapartitioned into subsets for each of the sortSaort

Graphs. One of the core concepts of this paper is thag@phs We start by repeating the
usual definition of a directed, multi-sorted graph.

Definition 1 (graph) Agraphis a tupleG = (Node Edge src, tgt) whereNodeis a set of nodes,
Edgea set of (directed) edges, asrt, tgt: Edge— Nodeare source and target functions, respec-
tively.

Note that although this definition does not yet specify nodedpelabels the nodes and
edges do hav@entities In some circumstances it will be the case tNaide EdgeC ID and
the identities are actually meaningful to the reader; intheakes sense to include them in a
visualisation of the graph. In particular, this is the camaype graphs— see below.

We will use two kinds of graph: instance graphs and type graoth extend the notion
of graph with some further structure. To start with instagcaphs: these have an additional
labelling functionthat associates an identifier with every node and edge. éruntire, edges have
indices which are chosen from the set of natural numbers in such ahletyhe combination of
source node, index and label together completely deterthaedge.

Definition 2 (labelled graph) Alabelled graphis a tuplelG = (Node Edge src,tgt,ix, lab)
where(Node Edge src, tgt) is a graph and

e iX: Edge— Nat is anindexing functiorassigning a natural number to every edge;

e lab: (NodeUEdge — ID is alabelling of nodes and edges;

e Forey, e € Edge if src(ey) = sre(ey), ix(e1) = ix(ex) andlab(er) = lab(ey), thene; = ey.
For a given node € Nodeand labela € ID, the set of outgoing edges is defined by

out(n,a) = {e< Edge| src(e) =n,lab(e) =a} .
The indices assigned by the functibnare used for two purposes:

e To distinguishedges. Graphs may have distinct edges going out of the sadesarml
bearing the same label, and even going to the same node {swsaeilled parallel edges).
These are useful to represent some UML concepts; in patjculdered associations and
bags. The indices serve to distinguish such edges, i.e tigam their own identity.
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Figure 1: Example graphical representation of a labellecjgin

e Toorderedges. One of the more powerful UML concepts is that of anreddassociation;
this does not only define a one-to-many relation betweercth one type to objects of
another, but also establishes a local ordering over thefqgarget) objects related to a
single (source) object.

In contrast to edges, the encoding of node identities is metfby the above definition. It
should, however, be understood that there is indeed sortiegiisshing mechanism, apart from
the labelling function, that tells nodes apart. On the immatation level, for instance, this
mechanism is typically based on memory addresses, or, iesnmNoden Data, by the data
value. On the modelling level, the position within a diagremprinciple suffices as the distin-
guishing mechanism. On the other hand, for ease of refeitiscaery common to use symbolic
namesfor nodes. Thus, we arrive at a graphical representatioatlled graphs based on the
following conventions:

e Nodes are drawn as boxes with inscribed labels. The labelpraceded by a colon (*:’).
In front of a colon, there may either be a symbolic name, wisdh fact itself an element
of Name but which plays no role in the formal meaning of the graph enfact has no
counterpart in Definitior2; or, in the case of nodes that are actually data values, tiing st
representation of the data value may be displayed. (We edllslow that the label is
typically the type, which for data valuess Datais given implicitly by type(v).)

e Edges are drawn as arrows with superimposed labels. This lat@y be preceded by a
number representing the edge index, separated from thiddkalecolon; in particular, this
is necessary if there is more than one outgoing edge witHdhat and the numbering is
needed to determine an ordering.

e As an important special case, edges pointing to nodes taabaulicitly identified, either
by data values or by symbolic names, may be represented bybed equations of the
form “label = id” or “label:Type = id” instead of arrows.

Labelled graphs are used to represent concrete systemtsieinveords, they are on the level of
individual programs or object diagrams. An example shovaithgf the graphical representation
features is given in Figuré Here,y andz are symbolic names having no formal meaning within

Proc. GT-VMT 2008 4/16



@ ECEASST

the graph, whereald and“yes” are data values of typat and String, respectively, an@8, 45
etc. are edge indices.

Graph morphisms. With respect to our aim of providing a sound and comprehenfgivmal-
isation of UML concepts, one aspect is not yet completelyeoed, namely the fact that node
identities and edge indices are not uniquely determinetidgiagrams. In this sense, the formal
interpretation of the diagrams remains ambiguous.

The reason why we are nevertheless content with this saolugidhat this ambiguity is not
harmful, because the choice in no way matters to the actuahimg. Put differently, it is al-
lowed to abstract away from the precise identities, praVithe nodes and edges remain distin-
guishable. The standard way to formalise this type of arguiseby interpreting the structures
under consideration — here, our graphsup-to or modulosome equivalence. In this particu-
lar case, the standard way to define an appropriate equoelsrthrough the notion ajraph
isomorphism

Definition 3 (graph (iso)morphism) Given two grapf@sH, amorphismfrom G to H is a pair
of mappingsf = ( fnode: NOd&s — Nodey, feqge: Edges — Edge,) such that

e Node and edge labels are preservedi o ( fnodeU fEdge) = labg;
e Sources and targets are presen@d; o feqge= fodeo SICe andtgty, o feqge= fnodeotgtg

f is anisomorphismif fyoge and feqgeare bijective, i.e., provide a one-to-one mapping between
Nodes andNodey, resp.Edge; andEdgg,. We writeG = H (G is isomorphic taH) to denote
that there is an isomorphism fro@to H.

It is especially important to realise that (iso)morphismesreot required to either respect node
identities or edge indices, symbolic names, or diagramuayo

For one particular purpose we will later on strengthen tlagirements on morphisms, in such
a way that the ordering on edge indices is sometimes reqtared preserved; namely, when we
use the index to reflect an ordering over the edges themselves

Type graphs. For purposes of documentation, structuring and correstness common to
impose a discipline over labelled graphs, comparable tgrtés@amar of programming languages,
or more to the point here, comparable to a class diagram. rticplar, we use dype graphto
impose local constraints on the allowed labels and cormestbetween edges and nodes, and
associateadonstraintsto impose other, more sophisticated or less local, prageerti

Definition 4 (type graph) Atype graphis a tupleTG = (NType ETypesrc, tgt,inh) where
1. NTypeC ID is a set ofnode typesndETypeC ID a set ofedge types

2. (NTypeETypesrc,tgt) is a graph, witiNTypeas node set anfTypeas edge set, such that
src(e) = ng(e) for anye € EType

3. inh C NTypex NTypeis a reflexive partial ordering relation expressing that sarmde
typesinherit from others. (Reflexivity here means thatinh T holds for all node types
T € NType)
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Figure 2: Example type graph
We typically use capital letter§ (E) to range over node and edge types.

The condition on the source function of edges (clause 2 indfiaition) states that the source
type of an edge is at the same time its name space. Since quigedne identifiers and identifiers
are pairs of names and namespaces, it follows that edge aypasiquely determined by their
source type and name. This setup allows us to use edge tyfretheisame name, but only for
distinct source types — which is consistent with the sitrain most, if not all, object-oriented
paradigms.

Also note thatnh is a partial order, but not necessarily a forest: this ingplieat a node type
can extend more than one other node type (in common terngpotwur type graphs support
multiple inheritance). At the same time, the partial orda&ture ofinh implies that there can be
no inheritance cycles.

For “node type” in the definition above, one may for most psgmread “class;” the only
difference is that the node types typically include datéssaie say thalt G builds ora signature
if SortC NType

A visual representation of a type graph can be given by drqwirery node type as a box
with the type identifier inscribed, every edge type as a “rafrarrow with the edge name as
label, and every extension (i.e., frogmt, notinh!) as an unlabelled arrow with triangular arrow
head. Figur& shows an example type graph. This is very close to the tosditiclass diagram
view, except that the data sorts are not treated as spesies ¢ae., data type attributes are not
distinguished from associations).

Typing and instance graphs. The meaning of a type graph is defined by the set of its (cdyrect
typed) instance$.The idea is that the instances of a type gratare labelled graphs with labels
chosen from the types GiG, and consistent with the graph structureT@ modulo inheritance.
To formalise it, we use the following auxiliary notation farbitrary nodes and node typeg,
resp. edges and edge typeE:

nT :< lab(n)inh T

eE & lab(e)=E .
In words,n: T expresses that the label of the nod@n the instance graph under consideration) is
a node type that inherits fro. Note that it follows that, for a given, there can easily be more

than one node typ& such than:T, ranging fromT = lab(n) to all generalisations of. On the
other hand, in case of edgest expresses thdab(e) is exactlythe edge typé&.

1 Strictly speaking, the meaning is defined by dagegoryof instances and valid morphisms: as mentioned above,
in one case we need to impose additional requirements ondhghisms rather than the graphs.
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Definition 5 (instance graph) LeIGbe a type graph. A labelled grapG is typed by TGor
aninstance graph of TGf for every noden € Nodeand every edge € Edge

e lab(n) € NTypeandlab(e) € EType
e src(e):src(lab(e)) andtgt(e):tgt(lab(e)).
The set of instance graphs ©6 is denotednst[TG] (but see Footnot#).

For instance, the labelled graph in Figuras not an instance graph of the type graph in
Figure2, since it contains several edge labels that are not preséme itype graph.

3 Constraints

The concepts introduced in the previous section are, in émses of existing graph theory,
straightforward; in fact, the only non-standard concepésthe structure we have chosen for
identifiers, and the fact that we are using indexed edge$eil&d (instance) graphs. In this sec-
tion, we introduce a way to enrich type graphs, and so candtna set of valid instance graphs,
in ways that formalise the concepts found in UML.

First of all, we give a general definition of@nstraint setover a graph; then, we define a
series of special types of constraints tuned towards UMIcepts.

Definition 6 (graph constraint) LeTG be a type graph. Aonstraint set over TG a tuple
(Consaty whereConis a set ofgraph constraintsandsat C InstiTG| x Conis asatisfaction
relation over the instances d@fG. We denotdG sat cto denote that an instance gra@satisfies
a constraint.

This definition only specifies that a graph constraint is gbing for which there exists an
interpretation, expressed in terms of the graphs thatfgaktis constraint. The interpretation is
embodied in the satisfaction relatigt The real question is hosatis defined. By combining
type graphs with a constraint set, we arrive at the conceanudde] which is our equivalent to
a UML class diagram.

Definition 7 (model) Amodelis a pairMod = (TG, Con) whereTG s a type graph, an@on
is a constraint set ovarG, consisting of constraints of the types listed below.

The main contribution of this work, apart from the selectadrthe appropriate type and in-
stance graph definitions, lies in the definition of a numbarsefful graph constraint “templates”
and the corresponding satisfaction relations. The canséraan be subdivided into a number of
categories, listed in Tabl& In this workshop paper, we can only discuss a few of the tatapl
in detail; the report versionK[RO8] contains the complete list, in the same style as the ones
reported here.

3.1 Association constraints: Bidirectionality

Associations in UML class diagrams have the property thet tan (in principle) be traversed in
either direction. Moreover, in general the ends of an aatioci can have their own names. This
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Table 3: A classification of constraints

Category Constraints

Node type Abstractness

Association | Bidirectionality, Multiplicities, Indexing, Uniqueness
Containment | Acyclicity, Unsharedness

Specialisation| Subsetting, Redefinition, Union

General OCL

is in contrast to the graphs of this paper, where edges adérectional. To model bidirectional
associations, we therefore neb edges, one for either direction, whiopposeeach other.

Definition 8 (bidirectionality constraint) LeTG be a type graph. Aidirectionality constraint
overTGis a pairoppose(D, E) whereD, E € ETypeare edges iT G, such thasrc(D) = tgt(E)
andtgt(D) = src(E). Satisfaction is defined for ab € InstTG| by

G satoppose(D,E) :< Vng:sre(D),mp:tgt(D). |{d € out(n;,D) | tgt(d) = ny}| =
|{e € out(ny,E) | tgt(e) = m }| .

Figure4 gives an example of a bidirectionality constraint. The tgpeph (left hand side) has
an associated constraioppose(B.c,C.b), visualised as a two-headed arrow. The centre graph
does not satisfy this constraint, as there Glatyped edge without an opposiBjc-typed one.

In the right hand side graph this is repaired, so that thiplgiaa valid instance of the (enriched)

type graph.

3.2 Association constraints: Indexing

To capture the notion of aordered collectiorfrom class diagrams, we need to formalise what it
means for a set of graph nodes to be ordered. To capture ety is actually quite involved,
even though it is conceptually straightforward. Here we enage of the edge indices that are
part of the instance graphs (see Definitln if an edge type is declared as indexed, the edge
indices have to be picked from a consecutive range from 1 tgsyvand moreover (in fact, more
importantly), morphisms are required to respect the eddjees.

Definition 9 (indexing constraint) LeTG be a type graph. Amdexing constrainover TG
is a predicaténdexed(E), with E € EType Satisfaction is defined for alb € InstTG] and all

type graph invalid instance graph valid instance graph

b
I I N e N e
Cc
C

Figure 4. Example type graph modelling bidirectional edges
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type graph invalid instance graph valid instance graph

b 54:b
[8 e

Figure 5: Example type graph with an indexing constraint
morphismsf between instance grap@H < Inst[TG| by

E). 1 <ix(e) <|out(n,E)]
=i

G satindexed(E) :&  Vnisrc(E),Ve € out(n,
)=ix(e) .

f satindexed(E) & Ve:E = iX(fgqgd€)

Figure5 gives an example of an indexing constraint. The type gragfh lfand side) has an
associated constraiitdexed(C.b), visualised by the annotaticfindexed} near the arrow head.
The centre graph does not satisfy this constraint, as itwasottgoingC.b-typed edges with
indices {54,129}, which do not form a consecutive range. This is repaired énrtght hand
side graph. More importantly, where ordinarily the righhtisside graph would be considered
symmetric (having two interchangealBetyped nodes), this is no longer true in the presence of
the indexing constraint: the symmetry (formally, an isopiasm from the graph to itself) maps
(n,C.b,1) to (n,C.b,2) (wheren is theC-typed node in the graph) and hence does not satisfy the
constraint, since it does not preserve edge indices.

3.3 Containment constraints: Acyclicity and unsharedness

Another notion from UML class diagrams that has proved to Wigequseful in practice is that
of aggregationor containment Whereas ordinary edges may impose an arbitrary structure o
the nodes they connect, containment is intended to refles¢rarbhy of things. Therefore,
when edges in a type graph are declared to be acyclic, thetimteis that the edges in the
corresponding instance graphs do not form a cycle.

This type of constraint is in fact quite powerful if the edgeds in the hierarchy do form a
cyclein the type graphin that case, there could in principle be instance graplis avbitrarily
large cycles, all of which are ruled out by a single acyglicibnstraint. From this it can be seen
that the acyclicity constraint is a non-local property, &®uce outside the class of first-order
logic.

Definition 10 (acyclicity constraint) LeT G be a type graph. Aacyclicity constraintover TG
is a tupleacyclic(Ey, ..., En) whereEy, ..., E, € ETypeis a collection of edge types. Satisfaction
is defined for allG € Inst{TG| by

G satacyclic(Ey,...,En) < {eE|1<i<n}iscycle free

Figure6 shows an example of an acyclicity constraint. The type gfigfhhand side) has an
associated constraiatyclic(C.b,B.c) visualised by diamond-shaped decorations at the sources
of the edge types. (This visualisation always specifisgigle acyclicity constraint, consisting
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type graph invalid instance graph valid instance graph

(& o
0

H
hlc'

Figure 6: Example type graph showing an acyclicity constrai

of all diamond-decorated edge types. The case where a noddger type can in principle
be part of distincticyclic-hierarchies cannot be visualised without adding furthstirtguishing
information to the diamonds, for instance in the form of idfégrs.) The centre graph of Figuée
shows a small instance of such a cycle; hence this graphtesolae constraint. In the right hand
side graph this is repaired, so that this is a valid instari¢eeo(enriched) type graph.

The acyclicity constraint guarantees the absence of cyak#s name suggests), but it does
notguarantee the absence of sharing; in other words, on itstd&/naét certain that the structure
imposed by acyclic edges is a forest. To complement this, Ise@iatroduce a constraint that
specifies the absence of sharing; as will see, the Weinpositds a combination of acyclicity
and unsharedness. For an example unsharedness consteaigter to the technical report.

Definition 11 (unsharedness constraint) L& be a type graph. Annsharedness constraint
overTGis atupleunshared(E;, ... ,Ey), whereEy, ..., E, € EType Satisfaction is defined for all
G e Inst[Tq| by:

G satunshared(Ey, ..., Ey) < Vd:E,eE;. tgt(d) =tgt(e) == d=e .

3.4 Specialisation constraints: Redefinition

We have included node type inheritance as a basic notiorpmdyaphs, reflecting the common
concept from UML and other object-oriented settings. Fayesd on the other hand, although
there is likewise a notion of specialisation, but no singdenmonly accepted way to capture
this. Instead, UML knows several ways to define speciatisdike relationships between edges,
which we here formalise through edge type constraints.

These can be categorised suibset redefinition and union constraints. The only type we
discuss in this paper is redefinition; for the others seedblertical report. Redefinition imposes
a kind of “subtype” relation over edges, such that the syperis overridden by the subtype.
More precisely, if an edge type redefines another tyde, then a node ob’s source type may
no longer have an outgoirg-type edge — instead, this should b®dype edge.

Definition 12 (redefinition constraint) LeTG be a type graph. Aedefinition constrainbver
TGis a pairredefine(D,E), whereD,E € ETypeare edges iTG, such thatsrc(D) inh srqE)
andtgt(D) inh tgt(E). Satisfaction is defined for a® < Inst{TG] by:

G satredefine(D,E) :< PeE. lasrc(e):src(D) .

Figure7 shows an example of a redefinition constraint. The type gfkgfhhand side) has
an associated constrairedefine(Fb,A.d), visualised by the annotaticftedefines} at the arrow
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type graph invalid instance graph valid instance graph
[~ ("]
Bl

{redefines d}

Figure 7: Example type graph with a redefinition constraint

head. The centre graph does not satisfy the constraing #iece is ai\.d-type edge going out
of anF-type node. In the right hand side this is repaired, by chantiie offending edge into an
Fb-type; as a result, this instance graph satisfies the retiefionstraint.

4 UML Semantics

In this section, we will apply the general framework introdd above to UML class and object
diagrams, thus providing a formal, graph-based semartidhése diagrams.

Class and object diagrams. The formal meaning of a UML class diagram is that it is a model.
An overview of the mapping of UML class diagram concepts @sdbncepts in our framework
can be found in Tabl®. The model’s type graph can be easily recognized: each riabe
diagram is a node and each directed association is an edgediMted associations translate
to pairs of edges with a bi-directionality constraint, wéeéhe edge labels correspond to the
names of the association ends.

Most of the constraint types in our graph-based framewonkatso be easily recognized in a
class diagram, for instance a bidirectionality constrarghown in a class diagram in the same
manner as we have shown in Figure

Table 8: Summary of all constraints — including those that@mitted from this
workshop version; see the full repoiR0g. (Notation: E = E; - - - Ey)

abstract(T) 7n€ Nodes. lab(n) =T
oppose(D,E) Vni:sre(D),np:tgt(D).
|{d € out(ny, D) | tgt(d) = n}| = | {e € out(nz, E) | tgt(e) = ny |
mult(E, i) Vnisrc(E). out(n,E)| € u
indexed(E) Vn:src(E),Vee out(n,E). 1 <ix(e) < |out(n,E)|
Ve: E = ix(fedqgel€)) = ix(e)

unique(E) Vnisrc(E).Ver, e, € out(n,E).tgt(e;) =tgt(ex) = e1 =&
acyclic(E) {eE|1<i<n}iscycle free
unshared(E) Vd:Ej,eE;. tgt(d) =tgt(e) = d=e
subset(D,E) Vd:D. JeE. src(e) = src(d) Atgt(e) = tgt(d)
redefine(D,E) AeE. lasrc(e):src(D)
union(D,E) V1 <i < n:subset(E;,D)A
vd:D. 31 <i < n,e: Ej. src(e) = src(d) Atgt(e) = tgt(e)
ocl(¢) G- [¢]
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Table 9: Mapping of UML class diagram concepts to graphs

Category UML class diagram Graph model
General class type node
primitive type attribute type edde with tgt(E) € Sort
non-primitive type attribute  type eddewith tgt(E) ¢ Sort
Association | directed association type edge
non-directed/bi-directional  pair of type edges witspose
multiplicity mult-constraint
set (default for mult> 1) unique but notindexed
bag neitheindexed nor unique
sequence indexed but notunique
ordered set botimdexed andunique
aggregation acyclic
composition bothacyclic andunshared
OCL constraint ocl
Specialisation| inheritance inh-relation on type nodes
subset subset constraint
redefines redefine constraint
union union constraint
UML object diagram Labelled graph
General object node
object type node label
link edge
link type edge label
instance name symbolic id

UML class diagrams can be accompanied by OCL constraintsurlsemantics, these are also
translated to graph constraints, of the typ# ¢)(omitted in this workshop paper) , by relying on
the existing OCL semantics (which essentially providesuagiation to first order logic). In other
words, a class diagram together with its OCL constraintsaissiated to a model, in the sense
of Definition 7. This illustrates the fact that OCL constraints cannot lnses separate from
the class diagram. It will be no surprise that we define anablojmgram to be a labeled graph.
When a labeled graph satisfies a certain model, for instantzsa diagram or a class diagram
combined with constraints, it is a valid instance of that elod\n overview of the mapping of
UML object diagram concepts to the concepts in our framewarkbe found in Tabl®.

Evaluation. The semantics presented here should, as any semanticdd upaaccommonly
known characteristics of UML diagrams, even those that t{feméortunately) not been made
explicit in the UML specification. As an example, we show twmls characteristics; again,
we refer the reader td<R08] for a more comprehensive discussion. K&G,C) be the model
representing the class diagram under consideration.

e A commonly known characteristic of UML class diagrams ig ih#&e one end of a bi-
directional association is markddag} then the other end should be markfshg} or

Proc. GT-VMT 2008 12/16



@ ECEASST

{sequence}. Likewise, if one end is an (ordered) set, the other end maist $et as well.

In our semantics, this situation arises when the bi-dioeetiity constraint is combined
with the uniqueness constraint. This UML characteristimnttranslates to the following
“law” of graph constraints:

oppose(D,E) = (unique(D) < unique(E))

e According to the UML specification, the acyclicity consitiashould always be combined
with bi-directionality: “Only binary associations can bggaegations” (DMGO05), page
37). At the same time, only one end of this association can dr&ed as aggregate. This
is in accordance with common sense, which says that a pambtaontain its container.
In our framework this forbidden situation would occur whée &cyclicity constraint is
defined for both edges of a bi-directional associatior, i.e.

oppose(D, E) A acyclic(D) A acyclic(E) .

In our semantics, there are no instances that would satisty a model; in other words,
this combination of constraints is inconsistent (i.e., at@diction).

These cases give confidence that the presented semantigcoedorms to the intuition be-
hind UML. On the other hand, our semantics does not supdddivl aspects; in particular, the
following are not included:

e Names of associations. Only the role names associatedheitiisisociation ends are taken
into account, because we consider these to be more important

e N-ary associations, i.e. associations between more tharclwgses. These tend to occur
very rarely in class diagrams; moreover, the UML specifaratiself treats them more like
classes than like associations.

e Derived attributes or association ends. As the name sugyghsse are derived values and
need not be explicitly part of the formal representation.

e Navigability of associations. We feel that the directigtyabf the edges in the association
pair provides enough information.

e Operations. These cannot be expressed by a static structure

5 Conclusions

In this paper we present an elegant and simple semantics daf €ldds and object diagrams
based on graph structures that are as close as possibleitiarfarations in graph theory. The
main insight used is that a UML class diagram cannot be teatea simple type graph. It is
a much richer structure, which is embodied in our framewagrkhe use of (graph) constraints.
The use of constraints also makes it possible to changetha gemantics to include or exclude
certain semantic elements. For instance, by disallowiagbstract class constraint type one can
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easily define class diagrams without abstract classeshdrarbre, our definitions do not only
provide a semantics for both diagram types, but for theicglahip between them as well.

As stated in the introduction, simplicity was one of our mgirdelines. The only addition we
made to the familiar notion of labelled graph is the edgeimdgfunction, in order to capture
ordered associations. We investigated (and rejectedyaleaiternatives. The use of special
“collection node types” makes the definition of instancepgranuch more complex. Another
possibility is to use hypergraphs, but that in itself makesrhodel much more complex. A third
option is to use special edges between the target nodes oflared association to represent the
ordering, as we have done before ii[R06]. The problem with this solution is that the ordering
needs to be local not only to all edges of the given type, ma &l the source node.

In the introduction we stated that the quality of models isedained by precision, consis-
tency, and completeness. Our semantics provide a precseimgeto class and object diagrams.
Furthermore, the consistency of a model, i.e. the existefirestances, can be checked using the
given definitions. For instance, we can prove that a modéd aibi-directional association that
is an aggregate in both directions is inconsistent. Rekeatc this “logic of UML models” has
so far been scarce (see e.glH07]). The completeness of a model cannot be guaranteed by our
semantics. However, the semantics themselves are mordetentipan any other graph-based
semantics that we have found in the literature. For instdiifel T04, KGKK02, LBE*07] only
visualise a type graph with inheritance as a UML class dmagitaus implying a graph-based
meaning for class diagrams without actually defining an UMinantics. YFV06] includes at-
tributes, associations, and inheritance, but not contamymultiplicity, abstract classes, or edge
specialisation.

As a next step, we intend to investigate the integration offamework with the existing
theory of graph transformation. An important issue is toredliate our encoding of indexed
edges with the requirements of algebraic graph transfoomst

A final point we would like to make goes back to the introductiand concerns the (scientific)
merit of the type of effort we have undertaken in this papez.bBalieve to have achieved a simple,
intuitive and workable graph-based semantics. The fattdML was conceived over a decade
ago and still no graph-based semantics with this degreemplaieness had been presented (in
contrast to other theoretical bases, elg8348, Gei98 Ove99 Kna99 EK99, DIPV02 Ham09),
indicates that our undertaking was not trivial. Moreovieere is a great need for such semantics,
if ever model-driven engineering is to become a dependablbod. We know that many of the
ideas brought together in this work have been presentegtedibwever, the strength of this
contribution lies in the particular combination of thesedd. All in all, we believe that the result
should be judged not only on novelty, but on completenesstadility, and usability as well. If
there is no well-defined forum where this type of effort caceree recognition, there will be no
incentive, and the gap between theory and practice may newith us forever.

Acknowledgements: The research in this paper was carried out in the GRASLAN[eptp
funded by the Dutch NWO (project number 612.063.408).
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