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Abstract: In this paper we propose a formal extension of type graphs with notions
that are commonplace in the UML and have long proven their worth in that context:
namely, inheritance, multiplicity, containment and the like. We believe the absence
of a comprehensive and commonly agreed upon formalisation of these notions to
be an important and, unfortunately, often ignored omission. Since our eventual aim
(shared by many researchers) is to give unambiguous, formalsemantics to the UML
using the theory of graphs and graph transformation, in thispaper we propose a set
of definitions to repair this omission. With respect to previous work in this direction,
our aim is to arrive at more comprehensive and at the same timesimpler definitions.
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1 Introduction

Software industry is showing an increasing interest in model-driven development. Indeed, we
have little doubt that the future lies in higher-level models to take the place of code, in all but the
most performance critical domains. With this trend, however, thequality of those models is of
increasing importance. By this we do not mean the quality of the product being modelled (which
obviously is the final consideration) but rather of the modelling paradigm. Good models may
not guarantee good software, but on the other hand, a bad (ambiguous, inconsistent or unclear)
model can never be expected to yield a good end product, in particular if the transformation from
model to software is largely automatic.

The quality of models is determined by many aspects, among webelieveprecision, consis-
tencyandcompletenessto be paramount. The precision of a model corresponds to the lack of
ambiguity, or in other words, the degree to which the model will be understood in exactly the
same way by different persons and tools during the software development process. Consistency
formally means the existence of an (i.e., at least one) instance, or implementation, of the model,
whereas completeness means the inclusion of all relevant aspects, or (in other words) the ability
to predict the behaviour of the system under all circumstances.

The above “quality criteria” have a clear, universally agreed-upon interpretation in the world
of mathematics. To make the benefits of the mathematical interpretation available for everyday
use in the world of software modelling, however, it is imperative that there be a translation from
the latter to the former; in other words, a formal semantics of the modelling language. For
instance, it is commonly agreed that a natural interpretation of (UML-type) diagrams is in terms
of graphs— essentially, just nodes with connecting edges. Indeed, many authors use UML class
(and object) diagrams claiming that they are representations of type graphs. Unfortunately, few
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provide an actual formal underpinning of this claim, or whenthey do, the semantics covers only
a relatively small part of UML; for instance, [BELT04, LBE+07, KGKK02, TR05]. The most
comprehensive is [VFV06], but even there such basic notions as multiplicities are missing. We
see the absence of a more complete semantics as an important and regrettable omission, although
from a purely formal standpoint, there is little challenge in providing the necessary definitions.
The aim of this work is to bridge the gap between pure formalism and practicality.

Like the papers cited above, in this paper we distinguish thetype and instance levels, or in
other words, type graphs and instance graphs. We see a type graph as an intensional defini-
tion of a set of instance graphs, namely, those instance graphs for which it is a correct type.
Type graphs are then enriched with constraints that captureUML concepts such as bi-directional
associations, multiplicities, collection types, inheritance, redefinition of associations, and com-
position relationships. In this, we have based ourselves onthe (verbal) descriptions in the UML
2.0 specification [OMG05].

In searching for the aforementioned balance between simplicity and expressiveness of the
semantics, we have used the following guidelines:

• Instance graphs should be as simple and straightforward as we can make them, if necessary
at the price of increasing their sizes. In other words, wherethere is a choice between
enriching the formalism (resulting in more concise but morecomplex graphs) or using
larger (sub-)graphs to encode complexity, we have tended tochoose in favour of the latter.

• Type graphs should be as close to instance graphs as we can make them; the number of
special features or decorations should be minimised.

We have achieved this by using the concept of agraph constraint, which is essentially a
template for a logical formula on top of an ordinary (type) graph.

The remainder of this paper is structured as follows: after providing the basic definitions to
set the stage in Section2, we discuss the graph constraints in Section3. We consider these to
be the heart of our contribution. In Section4 we relate our constraints to the standardised UML
concepts. Finally, in the conclusion (Section5) we come back to the above considerations and
re-evaluate our choices.

Unfortunately, it is not possible to include the full set of definitions into this paper. A complete
version can be found in [KR08].

2 Basic concepts

Names and namespaces.UML is a visual language; its “sentences” are diagrams. However, a
major part of any diagram is still text, and so we need conventions for visualising text inside dia-
grams. For this purpose, we define a set ofidentifiers ID, consisting of anamefrom a predefined
universeName, and anamespacefrom a setNS, defined as follows.

• An identifier is a pair〈ns,name〉 of a namespacensand a namename;

• There is aroot or topnamespace⊤ ∈ NS;

• For everyns∈ NSandname∈ Name, the identifier〈ns,name〉 is again a namespace.
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To visualisean identifier we use a well-known notation, which is less cumbersome than the
angular brackets: the name space and name are separated by a dot, and the top namespace is
omitted altogether. Thus,〈ns,name〉 is actually writtenns.name.

For instance, the identifiera.name.space consists of the namespace in the namespacea.name,
which itself is an identifier with namespacea and namename. The identifiera, finally, consists
of the namea in the top name space.

Signatures and algebras. For our definition of model we use the notion of attributed type
graph, as defined in [EPT04]. The ingredients of this definition that are important hereare:

• A collection ofdata sorts Sort, which are in fact identifiers (henceSort⊆ ID)

• A collection ofcarrier sets Data, partitioned into subsets for each of the sorts inSort.

Graphs. One of the core concepts of this paper is that ofgraphs. We start by repeating the
usual definition of a directed, multi-sorted graph.

Definition 1 (graph) Agraphis a tupleG= 〈Node,Edge,src, tgt〉 whereNodeis a set of nodes,
Edgea set of (directed) edges, andsrc, tgt : Edge→Nodeare source and target functions, respec-
tively.

Note that although this definition does not yet specify node or edgelabels, the nodes and
edges do haveidentities. In some circumstances it will be the case thatNode,Edge⊆ ID and
the identities are actually meaningful to the reader; it then makes sense to include them in a
visualisation of the graph. In particular, this is the case for type graphs— see below.

We will use two kinds of graph: instance graphs and type graphs. Both extend the notion
of graph with some further structure. To start with instancegraphs: these have an additional
labelling functionthat associates an identifier with every node and edge. Furthermore, edges have
indices, which are chosen from the set of natural numbers in such a waythat the combination of
source node, index and label together completely determinethe edge.

Definition 2 (labelled graph) Alabelled graphis a tupleIG = 〈Node,Edge,src, tgt, ix, lab〉
where〈Node,Edge,src, tgt〉 is a graph and

• ix : Edge→Nat is anindexing functionassigning a natural number to every edge;

• lab: (Node∪Edge)→ ID is a labelling of nodes and edges;

• Fore1,e2 ∈ Edge, if src(e1) = src(e2), ix(e1) = ix(e2) andlab(e1) = lab(e2), thene1 = e2.

For a given noden∈ Nodeand labela∈ ID, the set of outgoing edges is defined by

out(n,a) = {e∈ Edge| src(e) = n, lab(e) = a} .

The indices assigned by the functionix are used for two purposes:

• To distinguishedges. Graphs may have distinct edges going out of the same node and
bearing the same label, and even going to the same node (sometimes called parallel edges).
These are useful to represent some UML concepts; in particular, ordered associations and
bags. The indices serve to distinguish such edges, i.e., give them their own identity.
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Figure 1: Example graphical representation of a labelled graph

• To orderedges. One of the more powerful UML concepts is that of an ordered association;
this does not only define a one-to-many relation between objects of one type to objects of
another, but also establishes a local ordering over the set of (target) objects related to a
single (source) object.

In contrast to edges, the encoding of node identities is not fixed by the above definition. It
should, however, be understood that there is indeed some distinguishing mechanism, apart from
the labelling function, that tells nodes apart. On the implementation level, for instance, this
mechanism is typically based on memory addresses, or, for nodes inNode∩Data, by the data
value. On the modelling level, the position within a diagramin principle suffices as the distin-
guishing mechanism. On the other hand, for ease of referenceit is very common to use symbolic
namesfor nodes. Thus, we arrive at a graphical representation of labelled graphs based on the
following conventions:

• Nodes are drawn as boxes with inscribed labels. The labels are preceded by a colon (‘:’).
In front of a colon, there may either be a symbolic name, whichis in fact itself an element
of Name, but which plays no role in the formal meaning of the graph andin fact has no
counterpart in Definition2; or, in the case of nodes that are actually data values, the string
representation of the data value may be displayed. (We will see below that the label is
typically the type, which for data valuesv∈ Data is given implicitly by type(v).)

• Edges are drawn as arrows with superimposed labels. The labels may be preceded by a
number representing the edge index, separated from the label by a colon; in particular, this
is necessary if there is more than one outgoing edge with thatlabel and the numbering is
needed to determine an ordering.

• As an important special case, edges pointing to nodes that are explicitly identified, either
by data values or by symbolic names, may be represented by inscribed equations of the
form “label = id” or “ label:Type = id” instead of arrows.

Labelled graphs are used to represent concrete systems; in other words, they are on the level of
individual programs or object diagrams. An example showingall of the graphical representation
features is given in Figure1. Here,y andz are symbolic names having no formal meaning within

Proc. GT-VMT 2008 4 / 16



ECEASST

the graph, whereas10 and“yes” are data values of typeInt andString, respectively, and88, 45
etc. are edge indices.

Graph morphisms. With respect to our aim of providing a sound and comprehensive formal-
isation of UML concepts, one aspect is not yet completely covered, namely the fact that node
identities and edge indices are not uniquely determined by the diagrams. In this sense, the formal
interpretation of the diagrams remains ambiguous.

The reason why we are nevertheless content with this solution is that this ambiguity is not
harmful, because the choice in no way matters to the actual meaning. Put differently, it is al-
lowed to abstract away from the precise identities, provided the nodes and edges remain distin-
guishable. The standard way to formalise this type of argument is by interpreting the structures
under consideration — here, our graphs —up toor modulosome equivalence. In this particu-
lar case, the standard way to define an appropriate equivalence is through the notion ofgraph
isomorphism.

Definition 3 (graph (iso)morphism) Given two graphsG,H, amorphismfrom G to H is a pair
of mappingsf = ( fNode: NodeG→NodeH , fEdge: EdgeG→EdgeH) such that

• Node and edge labels are preserved:labH ◦ ( fNode∪ fEdge) = labG;

• Sources and targets are preserved:srcH ◦ fEdge= fNode◦srcG andtgtH ◦ fEdge= fNode◦ tgtG

f is anisomorphismif fNode and fEdgeare bijective, i.e., provide a one-to-one mapping between
NodeG andNodeH , resp.EdgeG andEdgeH . We writeG∼= H (G is isomorphic toH) to denote
that there is an isomorphism fromG to H.

It is especially important to realise that (iso)morphisms arenot required to either respect node
identities or edge indices, symbolic names, or diagram layout.

For one particular purpose we will later on strengthen the requirements on morphisms, in such
a way that the ordering on edge indices is sometimes requiredto be preserved; namely, when we
use the index to reflect an ordering over the edges themselves.

Type graphs. For purposes of documentation, structuring and correctness, it is common to
impose a discipline over labelled graphs, comparable to thegrammar of programming languages,
or more to the point here, comparable to a class diagram. In particular, we use atype graphto
impose local constraints on the allowed labels and connections between edges and nodes, and
associatedconstraintsto impose other, more sophisticated or less local, properties.

Definition 4 (type graph) Atype graphis a tupleTG= 〈NType,EType,src, tgt, inh〉 where

1. NType⊆ ID is a set ofnode typesandEType⊆ ID a set ofedge types;

2. 〈NType,EType,src, tgt〉 is a graph, withNTypeas node set andETypeas edge set, such that
src(e) = ns(e) for anye∈ EType;

3. inh ⊆ NType×NTypeis a reflexive partial ordering relation expressing that some node
typesinherit from others. (Reflexivity here means thatT inh T holds for all node types
T ∈ NType.)
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Figure 2: Example type graph

We typically use capital letters (T,E) to range over node and edge types.

The condition on the source function of edges (clause 2 in thedefinition) states that the source
type of an edge is at the same time its name space. Since edge types are identifiers and identifiers
are pairs of names and namespaces, it follows that edge typesare uniquely determined by their
source type and name. This setup allows us to use edge types with the same name, but only for
distinct source types — which is consistent with the situation in most, if not all, object-oriented
paradigms.

Also note thatinh is a partial order, but not necessarily a forest: this implies that a node type
can extend more than one other node type (in common terminology, our type graphs support
multiple inheritance). At the same time, the partial order nature ofinh implies that there can be
no inheritance cycles.

For “node type” in the definition above, one may for most purposes read “class;” the only
difference is that the node types typically include data sorts. We say thatTG builds ona signature
if Sort⊆ NType.

A visual representation of a type graph can be given by drawing every node type as a box
with the type identifier inscribed, every edge type as a “normal” arrow with the edge name as
label, and every extension (i.e., fromext, not inh!) as an unlabelled arrow with triangular arrow
head. Figure2 shows an example type graph. This is very close to the traditional class diagram
view, except that the data sorts are not treated as special cases (i.e., data type attributes are not
distinguished from associations).

Typing and instance graphs. The meaning of a type graph is defined by the set of its (correctly
typed) instances.1 The idea is that the instances of a type graphTGare labelled graphs with labels
chosen from the types ofTG, and consistent with the graph structure ofTG modulo inheritance.
To formalise it, we use the following auxiliary notation forarbitrary nodesn and node typesT,
resp. edgese and edge typesE:

n:T :⇔ lab(n) inh T

e:E :⇔ lab(e) = E .

In words,n:T expresses that the label of the noden (in the instance graph under consideration) is
a node type that inherits fromT. Note that it follows that, for a givenn, there can easily be more
than one node typeT such thatn:T, ranging fromT = lab(n) to all generalisations ofT. On the
other hand, in case of edges,e:E expresses thatlab(e) is exactlythe edge typeE.

1 Strictly speaking, the meaning is defined by thecategoryof instances and valid morphisms: as mentioned above,
in one case we need to impose additional requirements on the morphisms rather than the graphs.
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Definition 5 (instance graph) LetTG be a type graph. A labelled graphIG is typed by TG, or
an instance graph of TG, if for every noden∈ Nodeand every edgee∈ Edge:

• lab(n) ∈ NTypeandlab(e) ∈ EType;

• src(e):src(lab(e)) andtgt(e):tgt(lab(e)).

The set of instance graphs ofTG is denotedInst[TG] (but see Footnote1).

For instance, the labelled graph in Figure1 is not an instance graph of the type graph in
Figure2, since it contains several edge labels that are not present in the type graph.

3 Constraints

The concepts introduced in the previous section are, in the sense of existing graph theory,
straightforward; in fact, the only non-standard concepts are the structure we have chosen for
identifiers, and the fact that we are using indexed edges in labelled (instance) graphs. In this sec-
tion, we introduce a way to enrich type graphs, and so constrain the set of valid instance graphs,
in ways that formalise the concepts found in UML.

First of all, we give a general definition of aconstraint setover a graph; then, we define a
series of special types of constraints tuned towards UML concepts.

Definition 6 (graph constraint) LetTG be a type graph. Aconstraint set over TGis a tuple
〈Con,sat〉 whereCon is a set ofgraph constraints, andsat⊆ Inst[TG]×Con is a satisfaction
relationover the instances ofTG. We denoteIG sat cto denote that an instance graphIG satisfies
a constraintc.

This definition only specifies that a graph constraint is something for which there exists an
interpretation, expressed in terms of the graphs that satisfy the constraint. The interpretation is
embodied in the satisfaction relation,sat. The real question is howsat is defined. By combining
type graphs with a constraint set, we arrive at the concept ofamodel, which is our equivalent to
a UML class diagram.

Definition 7 (model) Amodelis a pairMod = 〈TG,Con〉 whereTG is a type graph, andCon
is a constraint set overTG, consisting of constraints of the types listed below.

The main contribution of this work, apart from the selectionof the appropriate type and in-
stance graph definitions, lies in the definition of a number ofuseful graph constraint “templates”
and the corresponding satisfaction relations. The constraints can be subdivided into a number of
categories, listed in Table3. In this workshop paper, we can only discuss a few of the templates
in detail; the report version [KR08] contains the complete list, in the same style as the ones
reported here.

3.1 Association constraints: Bidirectionality

Associations in UML class diagrams have the property that they can (in principle) be traversed in
either direction. Moreover, in general the ends of an association can have their own names. This
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Table 3: A classification of constraints

Category Constraints
Node type Abstractness
Association Bidirectionality, Multiplicities, Indexing, Uniqueness
Containment Acyclicity, Unsharedness
Specialisation Subsetting, Redefinition, Union
General OCL

is in contrast to the graphs of this paper, where edges are unidirectional. To model bidirectional
associations, we therefore needtwoedges, one for either direction, whichopposeeach other.

Definition 8 (bidirectionality constraint) LetTGbe a type graph. Abidirectionality constraint
overTG is a pairoppose(D,E) whereD,E ∈ ETypeare edges inTG, such thatsrc(D) = tgt(E)
andtgt(D) = src(E). Satisfaction is defined for allG∈ Inst[TG] by

G satoppose(D,E) :⇔ ∀n1:src(D),n2:tgt(D). |{d ∈ out(n1,D) | tgt(d) = n2}| =
|{e∈ out(n2,E) | tgt(e) = n1}| .

Figure4 gives an example of a bidirectionality constraint. The typegraph (left hand side) has
an associated constraintoppose(B.c,C.b), visualised as a two-headed arrow. The centre graph
does not satisfy this constraint, as there is aC.b-typed edge without an opposingB.c-typed one.
In the right hand side graph this is repaired, so that this graph is a valid instance of the (enriched)
type graph.

3.2 Association constraints: Indexing

To capture the notion of anordered collectionfrom class diagrams, we need to formalise what it
means for a set of graph nodes to be ordered. To capture this correctly is actually quite involved,
even though it is conceptually straightforward. Here we make use of the edge indices that are
part of the instance graphs (see Definition5): if an edge type is declared as indexed, the edge
indices have to be picked from a consecutive range from 1 upwards; and moreover (in fact, more
importantly), morphisms are required to respect the edge indices.

Definition 9 (indexing constraint) LetTG be a type graph. Anindexing constraintover TG
is a predicateindexed(E), with E ∈ EType. Satisfaction is defined for allG ∈ Inst[TG] and all

Figure 4: Example type graph modelling bidirectional edges.
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Figure 5: Example type graph with an indexing constraint

morphismsf between instance graphsG,H ∈ Inst[TG] by

G satindexed(E) :⇔ ∀n:src(E),∀e∈ out(n,E). 1≤ ix(e) ≤ |out(n,E)|

f sat indexed(E) :⇔ ∀e : E ⇒ ix( fEdge(e)) = ix(e) .

Figure5 gives an example of an indexing constraint. The type graph (left hand side) has an
associated constraintindexed(C.b), visualised by the annotation{indexed} near the arrow head.
The centre graph does not satisfy this constraint, as it has two outgoingC.b-typed edges with
indices{54,129}, which do not form a consecutive range. This is repaired in the right hand
side graph. More importantly, where ordinarily the right hand side graph would be considered
symmetric (having two interchangeableB-typed nodes), this is no longer true in the presence of
the indexing constraint: the symmetry (formally, an isomorphism from the graph to itself) maps
(n,C.b,1) to (n,C.b,2) (wheren is theC-typed node in the graph) and hence does not satisfy the
constraint, since it does not preserve edge indices.

3.3 Containment constraints: Acyclicity and unsharedness

Another notion from UML class diagrams that has proved to be quite useful in practice is that
of aggregationor containment. Whereas ordinary edges may impose an arbitrary structure on
the nodes they connect, containment is intended to reflect a hierarchy of things. Therefore,
when edges in a type graph are declared to be acyclic, the intention is that the edges in the
corresponding instance graphs do not form a cycle.

This type of constraint is in fact quite powerful if the edge types in the hierarchy do form a
cycle in the type graph. In that case, there could in principle be instance graphs with arbitrarily
large cycles, all of which are ruled out by a single acyclicity constraint. From this it can be seen
that the acyclicity constraint is a non-local property, andhence outside the class of first-order
logic.

Definition 10 (acyclicity constraint) LetTGbe a type graph. Anacyclicity constraintoverTG
is a tupleacyclic(E1, . . . ,En) whereE1, . . . ,En ∈ ETypeis a collection of edge types. Satisfaction
is defined for allG∈ Inst[TG] by

G satacyclic(E1, . . . ,En) :⇔ {e:Ei | 1≤ i ≤ n} is cycle free.

Figure6 shows an example of an acyclicity constraint. The type graph(left hand side) has an
associated constraintacyclic(C.b,B.c) visualised by diamond-shaped decorations at the sources
of the edge types. (This visualisation always specifies asingleacyclicity constraint, consisting
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Figure 6: Example type graph showing an acyclicity constraint.

of all diamond-decorated edge types. The case where a node oredge type can in principle
be part of distinctacyclic-hierarchies cannot be visualised without adding further distinguishing
information to the diamonds, for instance in the form of identifiers.) The centre graph of Figure6
shows a small instance of such a cycle; hence this graph violates the constraint. In the right hand
side graph this is repaired, so that this is a valid instance of the (enriched) type graph.

The acyclicity constraint guarantees the absence of cycles(as its name suggests), but it does
notguarantee the absence of sharing; in other words, on its own it is not certain that the structure
imposed by acyclic edges is a forest. To complement this, we also introduce a constraint that
specifies the absence of sharing; as will see, the UMLcompositeis a combination of acyclicity
and unsharedness. For an example unsharedness constraint,we refer to the technical report.

Definition 11 (unsharedness constraint) LetTG be a type graph. Anunsharedness constraint
overTG is a tupleunshared(E1, . . . ,En), whereE1, . . . ,En ∈ EType. Satisfaction is defined for all
G∈ Inst[TG] by:

G satunshared(E1, . . . ,En) :⇔ ∀d:Ei,e:E j . tgt(d) = tgt(e) ⇒ d = e .

3.4 Specialisation constraints: Redefinition

We have included node type inheritance as a basic notion in type graphs, reflecting the common
concept from UML and other object-oriented settings. For edges, on the other hand, although
there is likewise a notion of specialisation, but no single commonly accepted way to capture
this. Instead, UML knows several ways to define specialisation-like relationships between edges,
which we here formalise through edge type constraints.

These can be categorised assubset, redefinition and union constraints. The only type we
discuss in this paper is redefinition; for the others see the technical report. Redefinition imposes
a kind of “subtype” relation over edges, such that the supertype is overridden by the subtype.
More precisely, if an edge typeD redefines another typeE, then a node ofD’s source type may
no longer have an outgoingE-type edge — instead, this should be aD-type edge.

Definition 12 (redefinition constraint) LetTG be a type graph. Aredefinition constraintover
TG is a pairredefine(D,E), whereD,E ∈ ETypeare edges inTG, such thatsrc(D) inh src(E)
andtgt(D) inh tgt(E). Satisfaction is defined for allG∈ Inst[TG] by:

G satredefine(D,E) :⇔ ∄e:E. lasrc(e):src(D) .

Figure7 shows an example of a redefinition constraint. The type graph(left hand side) has
an associated constraintredefine(F.b,A.d), visualised by the annotation{redefines} at the arrow
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Figure 7: Example type graph with a redefinition constraint

head. The centre graph does not satisfy the constraint, since there is anA.d-type edge going out
of anF-type node. In the right hand side this is repaired, by changing the offending edge into an
F.b-type; as a result, this instance graph satisfies the redefinition constraint.

4 UML Semantics

In this section, we will apply the general framework introduced above to UML class and object
diagrams, thus providing a formal, graph-based semantics for these diagrams.

Class and object diagrams. The formal meaning of a UML class diagram is that it is a model.
An overview of the mapping of UML class diagram concepts to the concepts in our framework
can be found in Table9. The model’s type graph can be easily recognized: each classin the
diagram is a node and each directed association is an edge. Non-directed associations translate
to pairs of edges with a bi-directionality constraint, where the edge labels correspond to the
names of the association ends.

Most of the constraint types in our graph-based framework can also be easily recognized in a
class diagram, for instance a bidirectionality constraintis shown in a class diagram in the same
manner as we have shown in Figure4.

Table 8: Summary of all constraints — including those that are omitted from this
workshop version; see the full report [KR08]. (Notation: ~E = E1 · · ·En)

abstract(T) ∄n∈ NodeG. lab(n) = T
oppose(D,E) ∀n1:src(D),n2:tgt(D).

|{d ∈ out(n1,D) | tgt(d) = n2}| = |{e∈ out(n2,E) | tgt(e) = n1}|
mult(E,µ) ∀n:src(E). |out(n,E)| ∈ µ
indexed(E) ∀n:src(E),∀e∈ out(n,E). 1≤ ix(e) ≤ |out(n,E)|

∀e : E ⇒ ix( fEdge(e)) = ix(e)
unique(E) ∀n:src(E).∀e1,e2 ∈ out(n,E). tgt(e1) = tgt(e2) ⇒ e1 = e2

acyclic(~E) {e:Ei | 1≤ i ≤ n} is cycle free
unshared(~E) ∀d:Ei ,e:E j . tgt(d) = tgt(e) ⇒ d = e
subset(D,E) ∀d:D. ∃e:E. src(e) = src(d)∧ tgt(e) = tgt(d)

redefine(D,E) ∄e:E. lasrc(e):src(D)

union(D,~E) ∀1≤ i ≤ n : subset(Ei ,D)∧
∀d:D. ∃1≤ i ≤ n,e : Ei . src(e) = src(d)∧ tgt(e′) = tgt(e)

ocl(φ) G |= [[φ ]]
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Table 9: Mapping of UML class diagram concepts to graphs

Category UML class diagram Graph model
General class type node

primitive type attribute type edgeE with tgt(E) ∈ Sort
non-primitive type attribute type edgeE with tgt(E) /∈ Sort

Association directed association type edge
non-directed/bi-directional pair of type edges withoppose

multiplicity mult-constraint
set (default for mult> 1) unique but notindexed

bag neitherindexed norunique

sequence indexed but notunique

ordered set bothindexed andunique

aggregation acyclic

composition bothacyclic andunshared

OCL constraint ocl

Specialisation inheritance inh-relation on type nodes
subset subset constraint
redefines redefine constraint
union union constraint

UML object diagram Labelled graph
General object node

object type node label
link edge
link type edge label
instance name symbolic id

UML class diagrams can be accompanied by OCL constraints. Inour semantics, these are also
translated to graph constraints, of the typeocl(φ)(omitted in this workshop paper) , by relying on
the existing OCL semantics (which essentially provides a translation to first order logic). In other
words, a class diagram together with its OCL constraints is translated to a model, in the sense
of Definition 7. This illustrates the fact that OCL constraints cannot be seen as separate from
the class diagram. It will be no surprise that we define an object diagram to be a labeled graph.
When a labeled graph satisfies a certain model, for instance aclass diagram or a class diagram
combined with constraints, it is a valid instance of that model. An overview of the mapping of
UML object diagram concepts to the concepts in our frameworkcan be found in Table9.

Evaluation. The semantics presented here should, as any semantics, uphold the commonly
known characteristics of UML diagrams, even those that have(unfortunately) not been made
explicit in the UML specification. As an example, we show two such characteristics; again,
we refer the reader to [KR08] for a more comprehensive discussion. Let〈TG,C〉 be the model
representing the class diagram under consideration.

• A commonly known characteristic of UML class diagrams is that if the one end of a bi-
directional association is marked{bag} then the other end should be marked{bag} or
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{sequence}. Likewise, if one end is an (ordered) set, the other end must be a set as well.

In our semantics, this situation arises when the bi-directionality constraint is combined
with the uniqueness constraint. This UML characteristics then translates to the following
“law” of graph constraints:

oppose(D,E) ⇒ (unique(D) ⇔ unique(E))

• According to the UML specification, the acyclicity constraint should always be combined
with bi-directionality: “Only binary associations can be aggregations” ([OMG05], page
37). At the same time, only one end of this association can be marked as aggregate. This
is in accordance with common sense, which says that a part cannot contain its container.
In our framework this forbidden situation would occur when the acyclicity constraint is
defined for both edges of a bi-directional association, i.e.:

oppose(D,E)∧ acyclic(D)∧ acyclic(E) .

In our semantics, there are no instances that would satisfy such a model; in other words,
this combination of constraints is inconsistent (i.e., a contradiction).

These cases give confidence that the presented semantics really conforms to the intuition be-
hind UML. On the other hand, our semantics does not support all UML aspects; in particular, the
following are not included:

• Names of associations. Only the role names associated with the association ends are taken
into account, because we consider these to be more important.

• N-ary associations, i.e. associations between more than two classes. These tend to occur
very rarely in class diagrams; moreover, the UML specification itself treats them more like
classes than like associations.

• Derived attributes or association ends. As the name suggests, these are derived values and
need not be explicitly part of the formal representation.

• Navigability of associations. We feel that the directionality of the edges in the association
pair provides enough information.

• Operations. These cannot be expressed by a static structure.

5 Conclusions

In this paper we present an elegant and simple semantics of UML class and object diagrams
based on graph structures that are as close as possible to familiar notions in graph theory. The
main insight used is that a UML class diagram cannot be treated as a simple type graph. It is
a much richer structure, which is embodied in our framework by the use of (graph) constraints.
The use of constraints also makes it possible to change the given semantics to include or exclude
certain semantic elements. For instance, by disallowing the abstract class constraint type one can
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easily define class diagrams without abstract classes. Furthermore, our definitions do not only
provide a semantics for both diagram types, but for the relationship between them as well.

As stated in the introduction, simplicity was one of our mainguidelines. The only addition we
made to the familiar notion of labelled graph is the edge indexing function, in order to capture
ordered associations. We investigated (and rejected) several alternatives. The use of special
“collection node types” makes the definition of instance graph much more complex. Another
possibility is to use hypergraphs, but that in itself makes the model much more complex. A third
option is to use special edges between the target nodes of an ordered association to represent the
ordering, as we have done before in [KKR06]. The problem with this solution is that the ordering
needs to be local not only to all edges of the given type, but also to the source node.

In the introduction we stated that the quality of models is determined by precision, consis-
tency, and completeness. Our semantics provide a precise meaning to class and object diagrams.
Furthermore, the consistency of a model, i.e. the existenceof instances, can be checked using the
given definitions. For instance, we can prove that a model with a bi-directional association that
is an aggregate in both directions is inconsistent. Research into this “logic of UML models” has
so far been scarce (see e.g. [MB07]). The completeness of a model cannot be guaranteed by our
semantics. However, the semantics themselves are more complete than any other graph-based
semantics that we have found in the literature. For instance, [BELT04, KGKK02, LBE+07] only
visualise a type graph with inheritance as a UML class diagram, thus implying a graph-based
meaning for class diagrams without actually defining an UML semantics. [VFV06] includes at-
tributes, associations, and inheritance, but not containment, multiplicity, abstract classes, or edge
specialisation.

As a next step, we intend to investigate the integration of our framework with the existing
theory of graph transformation. An important issue is to reconciliate our encoding of indexed
edges with the requirements of algebraic graph transformations.

A final point we would like to make goes back to the introduction, and concerns the (scientific)
merit of the type of effort we have undertaken in this paper. We believe to have achieved a simple,
intuitive and workable graph-based semantics. The fact that UML was conceived over a decade
ago and still no graph-based semantics with this degree of completeness had been presented (in
contrast to other theoretical bases, e.g., [LB98, Gei98, Öve99, Kna99, EK99, DJPV02, Ham05]),
indicates that our undertaking was not trivial. Moreover, there is a great need for such semantics,
if ever model-driven engineering is to become a dependable method. We know that many of the
ideas brought together in this work have been presented earlier; however, the strength of this
contribution lies in the particular combination of these ideas. All in all, we believe that the result
should be judged not only on novelty, but on completeness, adaptability, and usability as well. If
there is no well-defined forum where this type of effort can receive recognition, there will be no
incentive, and the gap between theory and practice may remain with us forever.
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[Öve99] G.Övergaard. A Formal Approach to Collaborations in the Unified Modeling Language.
Pp. 99–115 in [FR99].

[TR05] G. Taentzer, A. Rensink. Ensuring Structural Constraints in Graph-Based Models with Type
Inheritance. In Cerioli (ed.),Fundamental Approaches to Software Engineering (FASE).
LNCS 3442, pp. 64–79. Springer, April 2005.
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