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Abstract: The Resource Description Framework (RDF) is a standard developed
by the World Wide Web Consortium (W3C) to facilitate the representation and ex-
change of structured (meta-)data in the “Semantic Web”. While there is a large body
of work dealing with inference on RDF, a concept for transformation and manipu-
lation is still missing. Since RDF uses graphs as a formal basis, this paper pro-
poses the use of algebraic graph transformations with their wealth of well-known
constructions and results for this purpose. It turns out that RDF graphs are an in-
teresting application area for graph transformation methods, where some significant
differences to classical graphs yield practically relevant solutions for features like
attribution, typing and globally unique nodes.
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1 Introduction

The Resource Description Framework (RDF) (see [MM04]) consists of a set of specifications,
which provide an abstract syntax, semantics and several concrete representations for storage,
exchange and reasoning on arbitrary (meta-)data. Its primary use case is the “Semantic Web”,
in which the creation of globally distributed knowledge bases is envisaged. In Section 2 we
summarise the abstract syntax of RDF and provide a categorical framework for it.

The theoretical treatment of RDF mainly consists of inference mechanisms, which allow to
derive information from RDF data stores by the use of inference rules like, e. g., the transitivity of
a predicate. This focus is also apparent in the SPARQL Query Language for RDF (see [PS07]),
the proposed standard for accessing an RDF data store, which in contrast to SQL does not contain
any structures for manipulating the data themselves, but only constructs for retrieval.

At the present time, the modification of data in RDF stores is mostly implemented by adding
and removing individual data items. For many use cases, such as data in web-based applications
or the use of RDF as an abstract syntax for visual languages, it would, however, be desirable to
restrict this to sensible rule-based transformations, which can be modelled and analysed formally.
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This contribution proposes the use of algebraic graph transformation for the purpose of ma-
nipulating RDF data stores. Such a transformation approach allows for the formal treatment of
reversibility, dependencies and conflicts of transformations. Moreover, it facilitates the use of
grammars to restrict the possible structures and their development. In Section 3 we investigate
several well-known graph transformation approaches concerning their suitability for RDF and in
Section 4 we present our proposal for an RDF transformation concept.

As a use case for rule-based transformations, consider a web-based application storing bibli-
ographical information in an RDF data store. With a set of grammar rules we can restrict the
possible modifications to these data, such that only sensible information is represented at any
given time, e. g., it can be ensured that each publication has a title and an author or an editor.
Complex rules, derived from the simple ones in the grammar by certain constructions such as
union and sequential composition, could be used to implement and formally analyse changes
done by committing a whole form in the web interface. For example, the effect of a form to add
or edit a whole publication of a certain type can be given by a rule constructed from all grammar
rules applicable to this type of publication. Reversibility allows us to undo any changes done by
applying a rule, where the analysis of dependencies would allow us to undo any of the last unre-
lated changes instead of only the very last one. Moreover, the analysis of conflicts between rules
applied to the same graphs would enable us to resolve concurrent modifications to the data store.
In Section 5 the possibilities, which are already achieved by this contribution, are summarised
and possible lines of future work are related to their benefits in this example scenario.

2 The Resource Description Framework

In this section we reformulate and slightly extend the theoretical underpinning of RDF in the
framework of category theory. Some of the specific phenomena of RDF theory correspond to
well-known constructions in category theory and can hence be treated more elegantly in this set-
ting, which makes this reformulation worthwhile independently of the transformation approach
developed in the following sections.

2.1 RDF Graphs

The basic building blocks of RDF are Uniform Resource Identifiers (URIs) (see [BFM98]) and
literals. For the purposes of this paper we assume to have a given set URI of URIs, where we will
use XML Namespaces (see [BHLT06]) to shorten URIs. The namespaces rdf:, rdfs: and xsd: are
used for pre-defined URIs in the corresponding RDF and XML Schema specifications.

Literals are Unicode strings (see [Uni07]), which can be typed literals (with a URI denoting
the data type of the literal) or plain literals (with an optional language tag denoting the human
language of the literal). We formalise this by assuming a set String of all Unicode strings and
a set Lang of all language tags (including the empty tag to support optionality). The set of all
literals is then constructed by Lit := (URI× String) + (Lang× String), where × denotes the
(Cartesian) product and + the disjoint union of sets.

The typed literals facilitate the attribution of an RDF graph by literal values from arbitrary
pre- or self-defined data types, which are given by corresponding string representations. For
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example, the datatypes of XML Schema (see [BM04]) are recommended in the RDF specifica-
tions, such that literals like (xsd:integer,42) or (xsd:date,2008-03-29) may be used in RDF
graphs. Hence, an extension of the theory by algebraic specifications or similar techniques as it
is necessary for attributed graphs (see, e. g., [EEPT06]) is not needed in RDF.

RDF graphs are now given by sets of statements, where a statement is a triple consisting of a
subject, a predicate and an object. In the language of graph theory subjects and objects are nodes
and statements are edges labelled with predicates. Subjects and objects can be URIs, literals or
“blank nodes”, where blank nodes are nodes, which do not have a global identity, but are local
to the graph. Predicates are always given by URIs.

Definition 1 (RDF Graph) An RDF graph G = (GBlank,GTriple) consists of a set GBlank of blank
nodes and a set GTriple ⊆ (GBlank +URI+Lit)×URI× (GBlank +URI+Lit) of triples.

Remark 1 (Differences to RDF specifications) The formal specifications of RDF (see [KC04]
and [Hay04]) assume the blank nodes to be drawn from an infinite set, which is given globally.
Our approach is to keep the blank nodes local to the graphs and use category theoretical machin-
ery to ensure disjointness of blank nodes from unrelated graphs in the following subsections.

Moreover, the RDF specifications only allow literals as objects, but not as subjects of triples.
The relaxation of this requirement is, however, common in later literature (see e. g. [MPG07])
and eases our formal treatment significantly.

Since the edges are defined by a subset of the possible triples, there may be at most one edge
with a given predicate between the same nodes. Thus, RDF graphs are a special kind of simple
graphs, as opposed to multigraphs, which may have an arbitrary number of edges between two
nodes. This is justified by the interpretation of edges as true statements about the world, since it
should not make any difference, how often a statement is assured to be true, but only if it is true
at all.

The use of global sets of URIs and literals enables the distributed creation and storage of
information regarding the same entities and resources, where their connection is established by
the usage of identical URIs without the need to give explicit relations or morphisms.

In order to allow the typing of nodes by classes, the declaration of domains and codomains
for predicates, and hierarchies of classes and predicates, RDF defines some special URIs for
these concepts in “vocabularies” (see [BG04]). In [MPG07] it is shown that from the rather
verbose vocabulary in [BG04] only the predicates rdf:type, rdfs:dom, rdfs:range, rdfs:subClassOf
and rdfs:subPropertyOf are needed to achieve the same essential structure. A triple (s, rdf:type,c)
states that one of the classes of node s is represented by the node c. Triples (p, rdfs:dom,c) and
(p, rdfs:range,d) require for a triple (s, p,o) using the URI p as a predicate that c is among the
classes of the subject s and d among the classes of the object o. A triple (c, rdfs:subClassOf,d)
means that each node of class c is also of class d and, finally, a triple (p, rdfs:subPropertyOf,q)
implies that for each statement (s, p,o) also the statement (s,q,o) holds.

This concept, where schema information and typing are represented internally in the graph,
is fundamentally different from the classical approach in graph transformation, where schema
information is kept in a type graph (possibly with inheritance structure) and typings are given
by a morphism from the graph into the type graph. The advantages of the RDF approach lie in
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ont:Workshop ont:heldAt ont:Conference
rdfs:dom rdfs:range

ex:GT-VMT08 ex:ETAPS08

rdf:type
ont:heldAt

rdf:type

(xsd:integer,24) (hu,Budapest)

ex:accepted

ex:number

ex:venue

Figure 1: Example of an RDF graph

its flexibility: Nodes may have several classes or no classes at all instead of exactly one class in
the case of typed graphs. This facilitates the representation of information, for which there is no
schema available yet, and the application of different schemata to the same instance information.
Moreover, schemata and typing of an RDF graph may be easily modified at runtime.

Example 1 (RDF graph) In Figure 1 a small example of an RDF graph is depicted, where some
information about GT-VMT 2008 is represented. URIs are visualised by ellipses, literals by
rectangles, and blank nodes by circles. The triples of the RDF graph are given by the arrows in
the figure.

In the upper row a simple ontology for workshops being held at conferences is introduced.
This schema is instantiated in the second row to state that the workshop GT-VMT 2008 is held at
the conference ETAPS 2008. We use different namespaces, ont: for the ontology and ex: for the
instance information, to illustrate the possibility that the ontology namespace and its elements
are defined elsewhere and just imported into this graph.

The third row gives some additional information about the number of accepted contributions
for GT-VMT 2008 by a typed literal, and about the venue of ETAPS 2008 by a plain literal, where
the language tag states that the Hungarian name of the venue is “Budapest”. This is not really
necessary in this case, since Budapest has the same name in most languages, but is already useful
for cities like Beijing, Moscow, Rome or Munich, which have different names and transcriptions
in different languages.

2.2 RDF Graph Homomorphisms

To obtain a category of RDF graphs we define RDF graph homomorphisms, which capture the
structural relationships between RDF graphs. Essentially these are subgraph relations modulo
a translation of the blank nodes, which means that blank nodes can be renamed, identified and
included into a larger set of blank nodes before the accordingly translated triples are included
into the triples of the codomain graph.

Definition 2 (RDF Graph Homomorphism) Given two RDF graphs G and H, an RDF graph
homomorphism h : G→ H is given by a translation function hBlank : GBlank→ HBlank, such that
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G

lit1uri2uri1

1
2

p1 p2 p2

p3

H

uri1 uri2 lit1 uri3 lit2

3 4

p1 p2 p2 p4

p3 p3

h

Figure 2: Example of an RDF graph homomorphism

(hBlank)#(GTriple) ⊆ HTriple, where the extension (hBlank)# of hBlank to triples is constructed by
(hBlank)# := (hBlank + idURI + idLit)× idURI× (hBlank + idURI + idLit).

Remark 2 (Relationship to concepts of RDF) RDF graph homomorphisms are not considered
explicitly in the normative RDF specifications. However, a notion of graph equivalence, corre-
sponding to a bijective homomorphism in the sense of the above definition, is defined in [KC04]
and [Hay04], where there are some technical differences resulting from the different treatment
of blank nodes mentioned in Remark 1.

Example 2 (RDF graph homomorphism) In Figure 2 an example is shown, which abstractly
illustrates the possibilities of an RDF graph homomorphism. The blank nodes 1 and 2 of graph G
are identified to the blank node 3 in graph H, i. e., the homomorphism h is non-injective. In order
to satisfy the required triple set inclusion, the triples (3, p1,uri1), (3, p2,uri2) and (uri2, p3, lit1)
are included in H. Moreover, H also has some additional information not in the image of h,
namely the blank node 4 and the triples (4, p2,uri2), (4, p4,uri3) and (uri3, p3, lit2), i. e., h is
non-surjective.

Our first result is that RDF graphs and their homomorphisms in fact establish a category.
Moreover, arbitrary limits and colimits can be constructed in this category.

Proposition 1 (Category RDFHom) RDF graphs and RDF graph homomorphisms constitute
a category, denoted by RDFHom. This category is complete and cocomplete, i. e., it has limits
and colimits over all diagrams.

Proof sketch. Composition and identities are just the composition and identities of the underly-
ing translations of blank nodes, i. e., composition and identities in the category Set, which are
known to satisfy associativity of composition and neutrality of identities. The required triple set
inclusions for compositions follow easily from the underlying inclusions, while they are imme-
diately obvious for identical triple sets.

Colimits can be constructed by first taking the colimit CBlank of the blank nodes in Set. Then
the triple sets in the diagram can be translated via the morphisms into the colimit to become
triple sets over CBlank, where we can finally take the set-theoretic union of these translated triple
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sets to be the triple set CTriple of the colimit graph.
Limits can be constructed similarly by first taking the limit LBlank of the blank nodes in

Set. The reverse translation of the triple sets in the diagram to triple sets over LBlank can
be built by {(s, p,o) |(hBlank)#(s, p,o) ∈ GTriple} for all graphs G and corresponding functions
hBlank : LBlank→ GBlank. Finally, the triple set LTriple of the limit is obtained by the set-theoretic
intersection of the translated triple sets.

Remark 3 (Interpretation of limits and colimits) The merge of RDF graphs defined in [Hay04],
which takes the union of RDF graphs, while “standardising apart” common blank nodes, is
naturally obtained as the coproduct of RDF graphs in our category-theoretical setting. The more
complex colimits can be used to construct merges over common blank nodes, which are protected
from being standardised apart.

Intersections of RDF graphs are not treated explicitly in the RDF specifications. The limit
constructions in RDFHom can be used to formalise such intersections under common blank
nodes.

2.3 RDF Graph Instantiations

In [Hay04] blank nodes are interpreted as existential variables and an instance of an RDF graph
is defined to be a graph, where some of the blank nodes are replaced by concrete URIs or literals.
This leads to the following definition of a more general kind of morphism on RDF graphs. Note
that the name “instantiation” does not refer to the instantiation of a schema or ontology, but to
the instantiation of a blank node.

Definition 3 (RDF Graph Instantiation) Given RDF graphs G and H, an RDF graph instan-
tiation i : G→ H is given by an assignment function iBlank : GBlank → HBlank +URI+Lit, such
that (iBlank)#(GTriple)⊆ HTriple, where the extension (iBlank)# of iBlank to triples is constructed by
(iBlank)# := (iBlank + idURI + idLit)× idURI× (iBlank + idURI + idLit).

Remark 4 (Related concepts) RDF graph instantiations are a combination of instances and
subgraph relationships in the sense of [Hay04]. This is particularly interesting, because the
Interpolation Lemma of [Hay04] states: “S entails a graph E if and only if a subgraph of S is
an instance of E.” Using the notion of RDF graph instantiation this is simplified to: “S entails
E if and only if there is an instantiation i : E → S.” The characterisation of entailment by graph
homomorphisms is also examined in [Bag05], where RDF graphs are translated into directed,
labelled multigraphs and RDF entailment is shown to correspond to their morphisms.

Instantiations may also be used to formalise queries on an RDF data store. A data store, given
by an RDF graph D, is queried using a pattern, given by another RDF graph P. The result
of the query should be the set of all possible instantiations i : P→ D. In [CF07] a related but
more complex approach is taken, where SPARQL queries and RDF data sets are translated to
conceptual graphs and the results are computed by finding conceptual graph homomorphisms.

Example 3 (RDF graph instantiation) The RDF graph instantiation i : G→H in Figure 3 iden-
tifies the blank nodes 1 and 2 to the URI uri2 and maps the blank node 3 to the literal lit1. In
terms of entailment this means that the triple (uri2, p1,uri1) in H entails the triple (1, p1,uri1) in
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2
1

p1 p2
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i

Figure 3: Example of an RDF graph instantiation

G, (uri2, p2,uri1) entails (2, p2,uri1) and (uri1, p3, lit1) entails (uri1, p3,3). The non-surjectivity
of the instantiation i means that not all information in H is used to entail G. In this and follow-
ing figures we depict instantiations by jagged arrows, while plain homomorphisms are shown as
normal arrows.

In the following proposition we show that RDF graph instantiations give rise to another cat-
egory, which comprises RDFHom as a subcategory. This category is neither complete nor co-
complete. In Subsection 4.1 we will, however, examine circumstances under which pushouts of
instantiations exist.

Proposition 2 (Category RDFInst) RDF graphs and RDF graph instantiations constitute a
category, denoted by RDFInst, with RDFHom ⊆ RDFInst. This category does not have limits
and colimits in general.

Proof sketch. The composition of instantiations i : G→ H and j : H → K can be obtained by
( j ◦ i)Blank := ( jBlank + idURI + idLit)◦ iBlank. Identities idG are given by embeddings idG,Blank of
the blank node set GBlank into the coproduct GBlank +URI + Lit. Associativity of composition
and neutrality of identities follow from the corresponding properties of Set. The required triple
set inclusions are again direct consequences of the underlying inclusions in the composed instan-
tiations. The inclusion of RDFHom into RDFInst is obvious, since each blank node translation
hBlank : GBlank→HBlank is also an assignment hBlank : GBlank→HBlank +URI+Lit, which simply
does not use the possibilities of the extended codomain.

The existence of colimits is impeded by instantiations of the same blank node to different
URIs or literals, which cannot be reconciled. The existence of general limits is on the other hand
inhibited by the non-existence of a final object, into which unique instantiations are impossible,
since a blank node can be instantiated to arbitrary URIs or literals.

3 Which Transformation Approach?

In this section we will try to find an algebraic graph transformation approach suitable for trans-
forming RDF graphs, which should not only provide a formal basis for the transformations them-
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Figure 4: Double pushout transformation

selves, but also for features like reversibility (to support undoing of editing transformations) and
reasoning about dependencies (to achieve structured version histories).

3.1 Double Pushout Approach

The Double Pushout (DPO) approach is one of the predominant approaches in algebraic graph
transformation. Its theory has been reformulated in the framework of adhesive HLR categories in
[EEPT06]. The main idea of DPO transformations is to split the task of transforming a graph into
the deletion of graph elements by a pushout complement and the creation of new elements by a
pushout. A DPO transformation is shown in Figure 4, where the rule L←K→ R is applied to the
graph G via the match m : L→ G by first constructing the context C by a pushout complement
and then the resulting graph H with comatch n : R→ H by a pushout of R and C over K.

DPO transformations are always reversible due to their symmetric structure. If a graph H is
obtained from a graph G by the application of a rule L← K→ R, then a graph isomorphic to G
may be reconstructed from H by the inverse rule R← K → L. Moreover, there is an extensive
theory about the dependencies and conflicts between DPO transformation rules.

Most instantiations of the DPO approach ensure or require unique pushout complements in
order to facilitate unique transformation results. This is not possible for RDF graphs as can be
seen in the example in Figure 5, where two different pushout complements for the same given
situation are shown. The ambiguity results from the fact that the triple (u1, p1,u2), deleted in
the context graph K, can be deleted as in C in Figure 5(a) or it can be preserved as in C∗ in
Figure 5(b). The graph G is a pushout (set-theoretic union of the triples) in both cases.

Since this ambiguity results from RDF graphs being a specialisation of simple graphs, a similar
problem arises when applying the DPO approach to them. One possibility to overcome this is the
restriction to rules, which never delete an edge without also deleting one of its adjacent nodes.
Such a solution is, e. g., pursued in [BHKR07], where an edge in a multigraph is translated to
a “dummy node” in a corresponding simple graph and, hence, all rules deleting an edge in the
multigraph delete at least this very node in the translated simple graph. Theses rules are, however,
too restrictive in our scenario, because they would only allow to delete triples involving blank
nodes (and only while also removing the blank node itself) but not statements made solely about
URIs and literals. Another way to resolve the problem is the use of a different transformation
approach, two of which are shortly discussed in the following subsection.
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(a) Pushout complement with deletion

Gl2u2u1l1
p1p2 p2

C∗ l1 u1 u2 l2
p1p2 p2

Lu1 u2
p1

K u1 u2
l

m c∗

l∗

(PO)

(b) Pushout complement without deletion

Figure 5: Ambiguity of pushout complements in RDFHom

3.2 Single and Sesqui Pushout Approach

An early alternative approach to algebraic graph transformation is the Single Pushout (SPO)
approach studied in [EHK+97]. Instead of splitting deletion and creation into seperate construc-
tions the SPO approach achieves both at the same time by pushouts in a suitable category of
partial morphisms. Among the key characteristics of such partial pushouts are the deletion in un-
known context (if a node is deleted all edges connected to this node are also deleted even if they
are not mentioned in the rule) and the precedence of deletion over preservation (if a deleted node
is identified to a preserved one by the match the node is deleted leading to a partial comatch).

A recent proposal is the Sesqui Pushout (SqPO) approach introduced in [CHHK06]. It also
features deletion in unknown context but does not allow the identification of deleted and pre-
served nodes. This is achieved by a split into deletion and creation similar to the DPO approach,
where deletion is modelled by final pullback complements instead of pushout complements.

The SPO and SqPO approaches both result in deletion in unknown context, which is not desir-
able in our case, because it impedes the reversibility of transformations. Implicitly deleted edges
may not be reconstructed. While this could be resolved by using, e. g., an SqPO approach with a
condition prohibiting dangling edges or an SPO approach with an additional condition to avoid
identifications, we opt for modifying the DPO approach in the following section.

3.3 The Need for a Modified Approach

Since we want to have unique transformation results, but do not want deletion in unknown con-
text, we cannot use one of the previous approaches unmodified. Returning to Figure 5 we observe
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Figure 6: MPOC and MPOC-PO transformation

that the result we want to achieve in this situation is the deletion of the triple. Hence, our ap-
proach, developed in the following section for RDF, is to resolve the ambiguity by canonically
selecting the minimal pushout complement (MPOC), i. e., a pushout complement in which as
much as possible is deleted.

Definition 4 (Minimal Pushout Complement) Given morphisms l : K → L and m : L→ G in
an arbitrary category, a minimal pushout complement C of l and m with morphisms l′ : C→ G
and c : K → C is a pushout complement, i. e., G is a pushout of L and C over K, such that for
each pushout complement C∗ of l and m with morphisms l∗ : C∗→ G and c∗ : K→C∗ there is a
unique morphism x : C→C∗ with l′ = l∗ ◦ x and c∗ = x◦ c (cf. Figure 6(a)).

An MPOC-PO transformation is now given by a DPO transformation with the additional side
condition that the deletion in the left-hand square of Figure 6(b) is an MPOC, while the creation
in the right-hand square is still done by a pushout.

Definition 5 (MPOC-PO Transformation) An MPOC-PO transformation rule is given by a
span L← K→ R of morphisms in an arbitrary category. An application of this rule to an object
G via a morphism m : L→ G as match is given by the diagram in Figure 6(b) resulting in the
object H with the morphism n : R→ H as comatch.

This should preserve most of the well-behavedness of the DPO approach, because the only
difference is the added side condition, which ensures uniqueness of the transformation result.

Proposition 3 (Uniqueness of Transformation Results) The result of an MPOC-PO transfor-
mation is unique up to isomorphism.

Proof sketch. Since two minimal pushout complements have unique morphisms in both direc-
tions and their compositions have to be the respective identities as unique endomorphisms, they
are obviously isomorphic.

Moreover, pushouts are unique up to isomorphism in any category and, hence, the result of
first constructing an MPOC and then a pushout is also unique up to isomorphism.

Note that the existence of POCs, the existence of MPOCs for non-unique POCs and the exis-
tence of pushouts are not guaranteed in general. In the next section we will give constructions
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for pushouts and MPOCs in RDFInst, which under certain conditions also imply their existence.
The use of MPOCs as a way to canonically select the result of a deletion may also be beneficial

when applying the DPO approach to simple graphs or other categories, where there are non-
unique pushout complements.

4 RDF Graph Transformations and Basic Results

In this section we apply MPOC-PO transformations to RDF graphs, where the necessary con-
structions are explicitly developed and sufficient conditions on the rule and match morphisms are
given to ensure existence of the transformation results. Moreover, conditions for the reversiblity
of RDF graph transformations are shortly discussed.

4.1 MPOC-PO Transformations for RDF

For the creation of elements we need pushouts in RDFInst. Sufficient conditions for their exis-
tence can be achieved by restricting one of the instantiations in the given span to be an injective
homomorphism. This ensures that contradictions can arise neither due to assignments of one
blank node to different URIs or literals (the homomorphism cannot assign a blank node to a URI
or literal, but only to a blank node) nor due to the identification of several blank nodes assigned
to different URIs or literals (injectivity prevents identifications).

Theorem 1 (Pushouts in RDFInst) Given an injective RDF graph homomorphism r : K → R
and an RDF graph instantiation c : K→C, a pushout H with an injective RDF graph homomor-
phism r′ : C→ H and an RDF graph instantiation n : R→ H can be constructed by

• the blank node set HBlank := CBlank + (RBlank \ rBlank(KBlank)) with the injection r′Blank of
CBlank into the coproduct and the assignment nBlank, which acts on nodes from KBlank as
cBlank does and on the new nodes as an injection into the coproduct, and

• the triple set HTriple := (r′Blank)
#(CTriple)∪ (nBlank)#(RTriple).

Proof sketch. The construction of HBlank ensures that the assignment nBlank is well-defined, be-
cause the inclusion of CBlank enables its acting like cBlank on the preserved nodes, while the
addition of the new elements of RBlank facilitates their injective mapping. The union construction
of the triple set guarantees the satisfaction of the corresponding triple set inclusions, while the
commutativity nBlank ◦ rBlank = r′Blank ◦ cBlank also holds by construction.

For each other graph H∗ with instantiations n∗ : R→ H∗ and r∗ : C→ H∗, such that n∗ ◦ r =
r∗ ◦ c an assignment xBlank : HBlank→ H∗Blank +URI+Lit is uniquely induced by the requirement
that it acts on blank nodes from C as r∗ does (x◦ r′ = r∗) and on blank nodes from R as n∗ does
(x◦n = n∗).

Remark 5 (Asymmetric Construction of Pushout) In category theory pushouts are usually ob-
tained symmetrically by first constructing a coproduct, i. e., some kind of disjoint union, fol-
lowed by a coequaliser identifying the common elements in the interface. In general, this leads
to renaming of all elements in both given graphs.
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We have chosen a concrete, asymmetric construction in this theorem in order to highlight that
the (possibly very large) host graph can be left unchanged, while the additional blank nodes are
added disjointly. This is also closer to possible implementations, which should construct the
pushout directly instead of following the elegant but inefficient categorical construction.

For the deletion we will use the concept of MPOC introduced in Definition 4. In the following
theorem we give sufficient conditions and a construction for MPOCs in RDFInst. Two of these
conditions, namely the identification and the dangling condition, are well-known from the ordi-
nary DPO approach, while the third ensures that deleted blank nodes are not assigned to URIs or
literals, which cannot be deleted.

Theorem 2 (Minimal Pushout Complements in RDFInst) Given an injective RDF graph ho-
momorphism l : K→ L and an RDF graph instantiation m : L→ G, such that the deleted blank
nodes in LBlank \ lBlank(KBlank)

• are not identified to other nodes (identification condition),

• are not assigned to URIs or literals, and

• are not assigned to blank nodes, which are used in triples in GTriple \ (mBlank)#(LTriple)
(dangling condition),

an MPOC C with an injective RDF graph homomorphism l′ : C→ G and an RDF graph instan-
tiation c : K→C can be constructed by

• the blank node set CBlank := GBlank \mBlank(LBlank \ lBlank(KBlank)) with the inclusion l′Blank
of this set into GBlank and the assignment cBlank, which behaves like mBlank ◦ lBlank, and

• the triple set CTriple := GTriple \ (mBlank)#(LTriple \ (lBlank)#(KTriple)).

Proof sketch. The assignment cBlank is well-defined and the triple inclusion of (cBlank)#(KTriple)
into CTriple is satisfied, because the blank nodes in the range of mBlank ◦ lBlank and the triples from
KTriple are explicitly not removed in C, while the commutativity mBlank ◦ lBlank = l′Blank ◦ cBlank
also holds by this construction.

The blank node set GBlank may be reconstructed from LBlank and CBlank by the pushout con-
struction in Theorem 1, since the removed triples mBlank(LBlank \ lBlank(KBlank)) are exactly the
ones that are added by the pushout. Moreover, the pushout construction also recovers the triple
set GTriple. Hence, the construction in fact leads to a pushout complement.

For each other pushout complement C∗ with instantiations c∗ : K → C∗ and l∗ : C∗ → G the
blank node set C∗Blank has to be isomorphic to CBlank, because otherwise the pushout construction
would also result in a non-isomorphic blank node set. The blank node bijection xBlank : CBlank→
C∗Blank is then already uniquely determined by the requirement l′Blank = l∗Blank ◦ xBlank. The triple
set (xBlank)#(CTriple) has to be included in C∗Triple, since C∗ has to contain all triples, which cannot
be reconstructed from LTriple by the pushout, and all triples contained in KTriple in order to be a
pushout complement.
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Figure 7: Example of an RDF graph transformation

Remark 6 (Pushouts and MPOCs of proper instantiations) The conditions given in Theorem 1
and Theorem 2 are sufficient, but not necessary, respectively. In fact, it is possible to construct
pushouts of (proper) RDF graph instantiations if the assignments of blank nodes do not contra-
dict. For our application to RDF graph transformation the given constructions over homomor-
phisms are, however, general enough, since we do not want to instantiate blank nodes in the rule
but only in the match.

We now have both constructions that are necessary to define RDF graph transformations as
MPOC-PO transformations.

Definition 6 (RDF Graph Transformation) An RDF graph transformation rule is given by a
span L← K → R of injective RDF graph homomorphisms. An application of this rule to an
RDF graph G via an RDF graph instantiation m : L→ G as match is given by a MPOC-PO
transformation as defined in Definition 5 resulting in the RDF graph H with the RDF graph
instantiation n : R→ H as comatch.

Example 4 (RDF graph transformation) In Figure 7 an example of an RDF graph transforma-
tion is depicted, where the rule replaces a sequential occurrence of predicates p1 and p2 by a
single occurrence of p3, while deleting the intermediate blank node. Such a rule is not typical
for reasoning in RDF, since inference only yields additional triples, but does not delete anything.
We claim, however, that such deleting transformations are useful for editing RDF data, e. g., if
the predicates p1 and p2 are deprecated and shall be replaced by p3.

The following corollary summarises the existence and uniqueness properties of RDF graph
transformations.

Corollary 1 (Applicability and Uniqueness of RDF Transformations) An RDF graph transfor-
mation rule L← K→ R is applicable via a match instantiation m : L→ G if m does not identify
deleted blank nodes to other nodes, does not assign deleted blank nodes to URIs or literals and
does not assign deleted blank nodes to blank nodes occuring in triples not in the range of m. In
this case the resulting RDF graph H with comatch n : R→ H is unique up to isomorphism.

Proof. This corollary follows directly from Theorem 2 and Theorem 1 regarding the existence
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of the result and from Proposition 3 regarding its uniqueness.

4.2 Reversible Transformations

While DPO transformations are always reversible due to their symmetric structure, MPOC-PO
transformations are only reversible if the creation pushout is also an MPOC. In RDF graph
transformations this is the case if none of the additional triples in R is already present in C.

Theorem 3 (Reversibility of RDF Graph Transformations) Given the RDF graph transforma-
tion in Figure 6(b), the application of the inverse rule R← K→ L to the graph H via the match
n : R→ H is possible and leads to a graph G′ isomorphic to G provided that (r′Blank)

#(CTriple)∩
(nBlank)#(RTriple) = (nBlank ◦ rBlank)#(KTriple) = (r′Blank ◦ cBlank)#(KTriple).

Proof sketch. The given condition ensures that the right square is not only a pushout, but that
C is also an MPOC in this square, since all common triples of CTriple and RTriple are also in the
interface KTriple and will therefore not be removed by the MPOC construction.

In order to constrain RDF graph transformations to reversible cases negative application con-
ditions could be used, which disallow all triples added by the rule from being already present in
the host graph. To achieve the same expressibility additional rules could be added, which have
these triples in their left-hand sides and just perform the other changes of the rule. A complete
discussion is, however, outside the scope of this paper.

5 Summary and Future Work

In this contribution we have formalised RDF in a category theoretical framework, provided a
transformation approach for RDF graphs and shown under which circumstances transformations
are applicable and reversible. These results can provide a useful basis for the rule-based modifi-
cation and creation of RDF data.

Considering the application scenario sketched in the introduction, the theory developed so far
allows us to define a set of grammar rules. If an RDF data store is only modified using these rules,
certain structural conditions can be ensured, such as a publication in the bibliography application
having at least one title. Moreover, the reversibility of transformations allows us to undo the last
rule-based changes to the data store.

Another use case for transformation rules is the automatic application of a set of rules on
all possible matches, which could be used, e. g., to add references to a related ontology, where
the (non-deleting) rules would require certain predicates and types from the present ontology in
their left-hand sides and add the corresponding predicates and types from the new ontology in
their right-hand sides. Since the left- and right-hand sides can be whole graphs, intermediate
structures in the source ontology can be by-passed by simpler structures in the target ontology.
Vice versa, intermediate blank nodes may be introduced, if the target ontology needs them.

Future work should transfer theoretical results for negative application conditions to RDF
graph transformations. These would significantly enhance the expressibility of the rules by pro-
hibiting their application in certain contexts. This enhancement can be used to ensure that certain
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structures, such as the title of a publication in our scenario, can exist only once. On the other
hand it is needed to ensure termination of automatic transformations (by prohibiting the right-
hand side to be already present in the graph) and reversibility of rule applications (as already
mentioned in Subsection 4.2).

Analysis techniques for dependencies and conflicts should be adapted to RDF transformations.
These would enable us to develop a transformation-based version control system for RDF data
stores, in which independent changes can be reverted independently and merged automatically.
Moreover, the analysis of critical pairs for transformation rules could be used to propose default
resolutions for merge conflicts.
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