Electronic Communications of the EASST

Volume 10 (2008)

Proceedings of the
Seventh International Workshop on
Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

Ambiguity Resolution for Sketched Diagrams by Syntax Analysis Based
on Graph Grammars

Florian Brieler and Mark Minas

14 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Ambiguity Resolution for Sketched Diagrams by Syntax Analysis
Based on Graph Grammars

Florian Brieler’ and Mark Minas'

T Institute for Software Technology
Computer Science Department
Universitdt der Bundeswehr Miinchen
85577 Neubiberg, Germany
{florian.brieler|mark.minas } @unibw.de

Abstract: Sketching, i.e., drawing diagrams by hand and directly on the screen, is
gaining popularity, as it is a comfortable and natural way to create and edit diagrams.
Hand drawing is inherently imprecise, and often sloppy. As a consequence, when
processing hand drawn diagrams with a computer, ambiguities arise: it is not always
clear what part of the drawing is meant to represent what component. Resolution
of these ambiguities is the main issue of sketching. Ambiguity can only be solved
by exploring the context of ambiguous components. This paper describes ambigu-
ity resolution by syntax analysis in DIAGEN, a generic framework for generating
diagram editors. Such editors support free-hand editing (which is closely related
to sketching), and allow for analyzing the created diagrams based on a hypergraph
grammar. Our approach adds support for sketching to the generated editors. In order
to resolve the ambiguities in sketched diagrams, DIAGEN’s diagram analysis based
on graph parsing is used. The necessary modifications to DIAGEN and its graph
parser in particular are discussed.

Keywords: Sketching, Ambiguity Resolution, Hypergraph, Parser

1 Introduction

Nowadays diagram languages like the UML are very popular, and there is a lot of work going on
to model applications and systems (or, at least, part of them) using diagram languages, instead
of coding them traditionally with textual languages. Diagrams are more expressive in terms of
exposing structure and coherence of the modeled system; the used diagram language can be
domain-dependent, thus better focusing on the problem in question; and diagrams are — for some
problems — much more suited, e.g., for expressing graph-like structures like Petri nets or class
diagrams.

Tool support for processing of diagrams has evolved in the last years, with many approaches
available, e.g., Fujaba [FNTZ00], AToM? [LV02], DIAMETA [Min06] and DIAGEN [Min02].
Among these, the specification of syntax and semantics of a diagram language is either given by
metamodels or by graph grammars.

However, creating and editing of diagrams using such tools is not very natural. Diagram
components have to be selected from some graphical widget like a list, and placed on the canvas

1/14 Volume 10 (2008)

Ambiguity Resolution for Sketched Diagrams by Syntax Analysis Eﬁ

__> ?

Figure 1: A simple Petri net with two ambiguities, indicated by question marks.

by one or more mouse clicks. Instead, sketching, i.e., drawing diagrams by hand on the screen,
is similar to pen and paper and is much more natural, because it does not require complex user
interfaces.

This paper is concerned with ambiguity resolution, which is the main issue of sketching. Am-
biguities arise because drawing by hand is inherently imprecise and sloppy. Fig. 1 shows a
practical example of a simple Petri net, which is also used as running example in this paper.
Places and tokens are drawn as circles, transitions are drawn as rectangles. The two question
marks indicate ambiguities. On the left it is unclear for the two circles whether they represent
places or tokens. The component on the right could be a circle or a very deformed rectangle;
possible interpretations are place, token, or transition, resp. By looking at the context of the
ambiguous components, it becomes obvious that we have a place containing a token on the left
(a place containing a place is not meaningful, and so is a token containing another component),
and another place on the right (as the arrow connects a transition and a place, but not a transition
and a token or another transition). Apparently, context of an ambiguous component has to be
exploited to decide for the correct interpretation. This requires diagram analysis.

In [BMO8] we present a comprehensive approach to sketching enabled diagram editors, in-
cluding user interface, recognition of components in the drawing, support for text, and basic
ideas for diagram analysis. There are many approaches to sketching, but most of them do not
exploit the power of grammar-based approaches for ambiguity resolution. For diagram analysis
we have decided for DIAGEN,

e because it supports free-hand editing, which is the basis of sketching,

e because it uses graph grammars for its visual language parser, which are very powerful for
ambiguity resolution (discussed in this paper),

e and because DIAGEN is generic (it can be customized to any diagram language by a spec-
ification of the language). The approach in [BMO08] is designed to be generic as well.

In the present paper we describe in detail how we employ DIAGEN for diagram analysis in
order to resolve ambiguities. The main idea is that for each component it must be decided which
of its possible interpretations fits best to the other components.

This paper is organized as follows. Sec. 2 explains DIAGEN by the example of Petri nets, and
outlines the basic idea to support sketching. Sec. 3 and Sec. 4 describe the necessary modifica-
tions to DIAGEN. Sec. 5 discusses related work. Sec. 6 gives a brief summary and describes
further work.

Proc. GT-VMT 2008 2/14

Eg ECEASST

2 Hypergraph Grammars and Parsing in DIAGEN

A diagram is a set of diagram components. Each component has one or more attachment areas,
i.e., areas where the component can be related to other components. Relationships between
attachment areas depend on spatial placement. A relation is detected if two attachment areas
overlap or are close to each other (since sketching is imprecise, it is not meaningful to require
precise spatial placement of components). For example, places and transitions in Petri nets have
one attachment area each (their full shape). Arrows have two attachment areas (their head and
their tail), and can be related to places and transitions if its head or tail is close. There may be
relations which are not required for a diagram type, e.g., overlapping arrow heads in Petri nets.

DIAGEN [Min02] is a generic editor generator that generates diagram editors from language-
dependent specifications. Each specification describes one diagram language, and defines aspects
like diagram components and attachments areas, desired relationships, reduction rules, grammar
rules, and attributes for parsing (see below). Hypergraphs are used as internal models required
for diagram processing. Each component is represented as a single hyperedge visiting as many
unique nodes as the component has attachment areas. If a component visits more than one node,
its tentacles (connecting an edge with its visited nodes) are numbered in order to be identifiable.
Hyperedges are labeled; the label depends on the type of the respective diagram component. For
Petri nets, we have four different types of components: places, transitions, arrows and tokens.
Hence, hyperedges are labeled with c_place, c_trans, c_token, or c_arrow, resp. We
call such hyperedges component edges in the following. Additional information about a com-
ponent is stored in attributes of the representing component edge, for example, the position and
radius of a place. Relationships between diagram components are binary hyperedges visiting
the two nodes representing the related attachment areas. For Petri nets, we have a relationship
that relates an arrow head or tail to a transition (at_t rans), a relationship that relates an arrow
head or tail to a place (at_place), a relationship that relates overlapping places or transitions
(touch), and a relationship that relates a token to the place it is contained in (inside). Hyper-
edges representing relationships are called relation edges.

The overall system architecture of a diagram editor generated by DIAGEN is shown in Fig. 2.
Rounded boxes depict data structures, rectangles depict processing units. The figure shows an
editor without sketching support, called regular editor in the following. The layouter and the
transformer are not relevant for this paper. Also, we neglect attribute evaluation as the final step
of processing a diagram.

The drawing tool provides the user with a GUI, it is the actual diagram editor. As mentioned
before, a hyperedge is created for each component placed on the canvas by the user. We change
this behavior for sketching and create a hyperedge for each component that can be recognized
in the hand-drawn diagram. Therefore we have replaced the original DIAGEN editor by another
editor that allows for drawing by hand. The process of recognition of components from the
hand drawing is described in [BMO08]. Result of the recognition is a set of components. How
these components were drawn is neither relevant nor visible to the approach shown here, but
completely handled by the recognition process.

In the next step of the processing chain, the modeler identifies relationships between compo-
nents and creates respective hyperedges. No user input or user interaction is required for this
process. Relations cannot be restricted, e.g., by a condition, but depend solely on the spatial

3/14 Volume 10 (2008)

Ambiguity Resolution for Sketched Diagrams by Syntax Analysis Eﬁ

Semant.
Layout 4 represen-

information (—\ \ tation
rams

evaluation
Reduced
Reducer hypergraph Parser

Derivation
structure
model
modifies reads
reads
Hypergraph

Layouter

Highlights syntactically correct sub-diag Al

Hypergraph
model

Diagram Modeler

Drawing
tool transformer
reads
selecR selects
operation operation
o —
P /
T /
§ Q‘(y /
N

B Editor user

Figure 2: Architecture of a diagram editor generated with DIAGEN.

placement of the components. The result of the modeler is a hypergraph (the hypergraph model,
or HM) containing all component edges and all respective relation edges. In case of ambigu-
ity, a component edge is created for each possible interpretation of the ambiguous component.
Such component edges are independent from each other, although they were recognized from
the same strokes in the hand drawing. No information is stored that these edges actually repre-
sent the same component. For Petri nets, it is clear that only one of these edges can be valid at
the same time, but for other diagram languages the situation may be different. The mechanisms
of the subsequent reducer and parser are employed accordingly to account for such component
edges.

The HM for the Petri net shown in Fig. 1 is depicted in Fig. 3. Relation edges are shown as
arrows. As touch is a symmetric relation, each of the respective arrows has two arrow heads.
The two ambiguities identified in the drawing are highlighted in gray: for each of the two circles
on the left in Fig. 1, two component edges are created (c_place and c_token). For the
single component on the right, three component edges are created. The only non-ambiguous
components are the two arrows and the transition in the center. Because all component edges
are independent of each other, each of the three c_token-edges in Fig. 3 is also related to that
c_place-edge which represents the same circle in the drawing (the two vertically displayed
inside-relations on the left, and the inside-relation on the right).

Even the c_t oken-edge representing the large circle is identified to be inside the c_place-
edge representing the small circle, because their attachment areas overlap, hence an inside
relationship can be found (the name inside is misleading in this case). Furthermore, all iden-
tified places and tokens in in this example overlap and have their full shapes as attachment areas,
so the distance of the respective attachment areas is always 0. The same is true for the touch-
relation between the c_place and the c_trans on the right.

Both components and relationships are rated by a positive real number. For components, the

Proc. GT-VMT 2008 4/14

Eg ECEASST

Lc_place | { c place |

inside

c_trans

| c_token | | c_token |

Figure 3: Hypergraph model of the Petri net shown in Fig. 1. Ambiguities are highlighted.

rating depends on the complexity of the component, and on the precision of how it has been
drawn. Components being more complex, or being drawn more precisely, gain a higher rating.
For relationships, the rating depends on the distance of the two respective attachment areas. A
smaller distance means a higher rating. Each component edge and relation edge contains the
rating of the represented component or relation in an attribute. The rating will be used by the
parser.

Next, the reducer applies a set of reduction rules, i.e., graph transformation rules, to the HM.
Such rules consist of an LHS and an RHS, each are hypergraphs. The result of the reducer is the
reduced hypergraph model (RHM). In the first place, the RHM is newly created and therefore
empty. Then, for each match of the LHS of a reduction rule in the HM, a respective match for
the RHS of the matched rule is added to the RHM. The HM is not changed by the reducer.

The reducer serves two tasks: first, the RHM usually contains less hyperedges than the HM; as
the RHM is the input for the parser, a smaller model containing less edges improves processing
time. Second, invalid configurations which may occur in the HM due to misplaced components
are not transformed, i.e., they do not occur in the RHM. Application of reduction rules can be
restricted by conditions, and by negative application conditions (NACs).

The reduction rules for Petri nets are shown in Fig. 4. Corresponding nodes on the LHS and
the RHS are labeled with the same letter. NACs are highlighted in gray and crossed out. The two
upper rules transform places and transitions, as long as these do not overlap with any other place
or transition. The third rule transforms tokens inside places, ignoring tokens not inside places.
Here, a condition is applied: a token is only reduced if its radius is smaller than half the radius
of the containing place. The last two rules transform arrows between places and transitions.
As arrows have two attachment areas (head and tail), the attachment areas are distinguished by
numbers. Note that there are no reduction rules for arrows between two places or between two
transitions, as Petri nets do not allow such arrows.

Fig. 5 shows the RAM created by the modified reducer. The original reducer for regular editors
would not produce the subgraphs highlighted in gray, due to the NACs. Except for the transition
in the center, no transition or place would be reduced, as each of them touches another place or
transition because of ambiguous interpretation of the corresponding components. Of the three
tokens, only one would be reduced (the one that actually is a token), the other two would not,
due to the condition in the third rule.

Obviously, ambiguity cannot be resolved for those components not reduced. In the depicted

5/14 Volume 10 (2008)

Ambiguity Resolution for Sketched Diagrams by Syntax Analysis Eﬁ

N
==
a
J
J
y O
a

J
-)
inside
+[coen TR
a
a J
2

_Condition: t.radius < p.radius / 2
1 2

c_arrow
t_arrow

) 5
ab)
4

2

ab)

Figure 4: Reduction rules for the language of Petri nets.

exclude exclude

— = >i{ t_place | | t_trans | | t place [€= -
! 2o 2

Figure 5: Reduced hypergraph model of the hypergraph model shown in Fig. 3.

case, the original reducer is too strict and discards almost all ambiguous components. We rather
have to postpone ambiguity resolution to the parser, i.e., the RHM must contain complete infor-
mation, even on the ambiguous components. Therefore, the highlighted subgraphs are added to
the RHM in Fig. 5, together with the information about which components exclude each other.
This information is based on the NACs. Note that the conditions (like the one for tokens) are not
affected, and have to be met anyway.

Finally, the parser uses the hyperedges from the RHM as terminal edges and attempts to de-
duce the start symbol in a bottom up fashion. The production rules for Petri nets are shown in
Fig. 6. Terminals from the RHM are depicted as rounded rectangles with a white background,
while nonterminals have a gray background. There are two types of production rules unique in
DIAGEN. The one are set productions and the other are embedding productions.

Set productions are used to collect all edges with the same label, not regarding any order or any
subset, thus improving performance of the parsing process. In Fig. 6, set productions are depicted
with a stack of edges on the RHS (the two productions with Transitions and Places on
the LHS, and a stack of Trans and Place on the RHS). An alternative specification would

Proc. GT-VMT 2008 6/14

Eﬁ ECEASST

- a\
.) | o) _
T e '

_ a a a a a)
e = = A

“Trans) “Place)
\ J
[.= [Places] [Transitions]]
- N
(Pace J (LTrans] _
‘ ‘ *“embed 1 2
_t arro
_ 2 b a e b)
- A
(trans) (Place J _
® ® **embed 1 2
[t_arrow |
L 5 b 5 _arrow b)
Figure 6: Production rules for the language of Petri nets.
use recursive productions like Places ::= Place | Places Place . However, that

would require the parser to deduce any possible subset of all places, and in any possible order,
which leads to a combinatorial explosion. The two set productions for Petri nets express that
Transitions is a nonterminal edge representing the non-empty set of all Trans edges, and
Places is a nonterminal edge representing the non-empty set of all Place edges. The start
symbol for Petri nets is Net. The shown grammar therefore accepts a diagram as a correct Petri
net if it contains at least one place and one transition (a modified grammar could also accept Petri
nets without places or transitions).

Embedding productions are the other kind of production rule unique to DIAGEN. For effi-
ciency reasons, the used graph grammar is context-free. Embedding productions are used to
embed (nonterminal or terminal) edges into a context which has been derived by context-free
productions. An example are arrows in Petri nets. With embedding productions they can be
added to a derivation tree, resulting in a direct acyclic graph (DAG) as derivation structure. In
the following we will always use the term DAG, not distinguishing between a DAG and a tree.
Embedding productions consist of the same graphs on the LHS and the RHS, but with one addi-
tional edge on the RHS (the edge that is embedded). The two productions at the bottom of Fig. 6
are the two embedding productions required for Petri nets.

The parser must use the exclusion information provided by the reducer in order to deduce only
those start symbols which do not contain terminal edges excluding each other in their DAG. This
is described in Sec. 4, but first, it is explained how the reducer can use the NACs to collect the
necessary information for the exclusion of components.

Note that the modifications to the reducer and the parser do not require the reduction rules
or production rules to be modified. They are left unchanged, but are applied differently, as it is
described next. Also, the architecture shown in Fig. 2 is preserved. The information necessary
for ambiguity resolution is stored in additional attributes of the terminal and nonterminal edges.

7/14 Volume 10 (2008)

Ambiguity Resolution for Sketched Diagrams by Syntax Analysis E}

3 Sketching-related Modifications to the Reducer

We require the reducer to apply the reduction rules even if they are prohibited by matched NACs,
and create an exclusion relation exclude for the hyperedges in the RHM, i.e., the terminal edges
for the subsequent parsing step. The simple example of Petri nets discussed in the previous
section only shows terminal edges which mutually exclude each other. The general case is more
sophisticated, as shown in the following. Such complicated situations occur when a NAC consists
of more than only a single component hyperedge.

In the following we call hyperedges simply edges, and edges from the RHM terminal edges or
simply terminals. A match of some pattern graph P in a host graph H is an occurrence of P in H.
We regard a (sub)graph as set of edges. For a terminal #, where ¢ is in the occurrence of the RHS
of some reduction rule r, we denote by model(t) the corresponding occurrence of the LHS of r,
and by nacs(t) a set of all matches for NACs that would have prohibited the creation of 7. In the
following, we omit all relation edges in nacs(t) and keep only the component edges, as relation
edges completely depend on component edges. We can then define a relation exclude between a
set of terminals 7" and a single terminal ¢:

T exclude t < 3N € nacs(t) : N C U model(t')
el

T excludes ¢ if the union of all model(t'),t" € T contains all edges from a NAC N in the NACs
from ¢, N € nac(t). For example, let m,, be a component edge representing a place, and m;, be a
component edge representing a transition, and both components overlap, i.e., they exclude each
other (apart from the token, this is the case for the right of Fig. 3). Then, the reducer creates two
terminals, 7, and f;, with

model(t,) = {m,},nacs(t,) = {Ni },Ni = {m}
model (t;) = {m, },nacs(t;) = {N>},N» = {m, }

Now the set with the single terminal #, excludes 7, because model (t;) contains all edges in N,
which is a NAC in nacs(t,). By analogy, {z,} excludes #. If we had included the relation edges
in nacs(t,) and nacs(t;), both exclusions would not hold, as the relation edges do not occur in
model(t;) and model(t,).

A slight modification of this example shows that the exclude relation is not symmetric in
general. We change the reduction rule for places, so that a place has no NACs, i.e., it can overlap
with any other component (the rule for transitions is not changed). We get

model(t,) = {my},nacs(t,) = @
model(t;) = {m; },nacs(t;) = {N>},Np = {m,,}

Here, {, } still excludes ,, but not the other way around. In the following we assume the original
reduction rule for places as shown in Fig. 4.

For the general case, a NAC contains more than one component edge. Let N be a match of a
NAC. By applying several reduction rules, different terminals can be reduced from the edges in
N. Then, not only one, but more terminals are required to exclude a single terminal.

Proc. GT-VMT 2008 8/14

Eg ECEASST

Based on the ratings for component edges and relation edges, a rating can be computed for a
terminal # by adding up all ratings from all edges in model(t). The next section describes how the
parser exploits the exclude relation when deducing the start symbol, and how ratings are used.

4 Sketching-related Modifications to the Parser

The central data structure for the parser is the derivation DAG. Each DAG has a unique root: it
is the node which has no incoming edges. Leaves of a DAG have no outgoing edges. All leaves
represent terminals, all other nodes represent nonterminals. Unless embedding productions are
used, each node has a unique parent, except for the root. Each parent node is the LHS match
of a production rule, and its children are the respective match for the RHS of that rule. Nodes
representing embedded edges can have more than one parent; all parents of such a node represent
the context of the respective embedded edge.

The general idea for the parser is to avoid deduction of nonterminals from a set of terminals 7
where some terminal in 7 is excluded by other terminals in 7'. For this purpose we will define a
symmetric relation conflict; if two nonterminals conflict with each other, they must not occur in
the same derivation DAG.

Let nt be a nonterminal. By term(nt) we denote the set of all terminals used to deduce nt,
i.e., the set of all leaves in the DAG with nt as root'. DIAGEN applies a production rule (pro-
duction, for short) if three conditions hold: (i) a match M for the RHS must be found, (ii) for
all nonterminals nf in M all rerm(nt) must be pairwise disjoint, and (iii) the condition defined
for the production must hold. We leave (i)-(iii) unchanged, but add a fourth condition which
regards the exclude relation created by the reducer. We will see in the following that this fourth
condition depends on the type of the production. A Chomsky Normal Form can be computed
for each hypergraph grammar (apart from the set productions and the embedding productions).
Consequently, four different types of production rules have to be distinguished:

o terminal productions with exactly one terminal on the RHS.

e nonterminal productions with exactly two nonterminals on the RHS.
e embedding productions with nonterminals on both sides.

e set productions with an arbitrary number of nonterminals on the RHS.

Terminal productions may always be applied, no conflicts may arise here. For nonterminal
productions we first consider a set T of terminals. We call T conflicting if there exists a subset
E C T and a single terminal ¢ € T \ E where E excludes 7. Then, two nonterminals nt; and nt,
may be used on the RHS of a production rule if the union of their terminals, zerm(nt;) Uterm(nt,),
is not conflicting. This also implies that both term(nt;) and term(nt;) are not conflicting. We
define the symmetric relation conflict between two nonterminals. (nfy,nt;) € conflict if and only
if term(nt,) Uterm(nty) is conflicting. Then, nt; and nt, can be used on the RHS of a nonterminal
production if they are not conflicting, i.e., (nt,nt;) ¢ conflict.

1 term(r) is only relevant during construction of the derivation tree, so embedded edges are never in rerm(t).

9/14 Volume 10 (2008)

Ambiguity Resolution for Sketched Diagrams by Syntax Analysis E}

Embedding productions are treated differently than the other types of productions. First, the
DI1AGEN parser identifies each match for the context of each embedding production. This is only
possible if no edges of a match conflict with each other. Then, for each derivation DAG with the
start symbol as root, each of the previously identified matches is checked whether all of its edges
are contained in the DAG, i.e., are (direct or indirect) children of the root. Finally, for all such
matches, the additional edge of the RHS of the production is embedded, i.e. added to the DAG.
The edges of a match can only be contained in the DAG if none of these edges conflicts with any
other edge from the DAG. Therefore, the only condition that must be checked before an edge
may be embedded is whether it conflicts with the root of the DAG. If there is no conflict, there
can also be no conflict with any other edge in the DAG.

The fourth type of production rule are the set productions. Basically, set productions can
be seen as nonterminal productions with not exactly two, but one or more edges in the match
of its RHS. However, the production may be applied even if nonterminals in this match are
conflicting. In this case, the problem is to decide which of the conflicting edges should be
omitted, because this decision may have consequences on subsequent applications of production
rules and contexts for embedding productions. The former happens if the nonterminal that has
not been omitted conflicts with another nonterminal in a subsequent production rule. The latter
happens if the omitted nonterminal was part of a match for a context of an embedding production.
Consequently, we must defer the decision, as we cannot make it when applying a set production.
We temporarily ignore all conflicts, and do not omit any of the nonterminals on the RHS match.
When the start symbol is reached, there can be no further productions, and we can finally decide
which nonterminals to omit.

The nonterminal matching the LHS of a set production may be used in the match of a RHS of
another set production itself, either directly, or as a node contained in the DAG of a nonterminal
in this match. This can lead to a complex structure. An example is depicted in Fig. 7, where
the top part of a derivation DAG can be seen. As before, nonterminals are depicted as rounded
rectangles with a gray background. The thin arrows indicate parent-child relationship. The
subtrees of nonterminals with two outgoing arrows not ending in other nonterminals are of no
interest in this example. Embedding productions are not shown. A, B and C are nodes in the DAG
indicating applications of set productions. The fat arrows, marked with crosses, depict conflicts
between nonterminals.

When applying the nonterminal production a3 — BF we can immediately discard b3, as it
conflicts with F'. The production cannot be applied otherwise. The same is true for production
D — EC and c¢3. The following cases are more difficult. When applying set production A —
ajazazas, we cannot decide for a, or for b1, as we do not know about possible later consequences.
There is a conflict between a; and c¢;. The problem is that we do not know yet that A and C will
be used in the same DAG. Finally, when applying S — AD, we can decide for a; or by, for a; or
c1, for ¢ or ¢, and for a4 or ¢, as we know that there will be no further productions.

The problem of omitting nonterminals is NP-complete. It is a slight variation of the maximum
clique problem [Kar72]. However, we do not need the best solution; a heuristic is sufficient. In
order to guide the heuristic we use the ratings assigned to each terminal. The rating rating(nt)
of a nonterminal nr is the sum of all ratings from the terminals in term(nt). This way, the
start symbol in a derivation DAG is rated. For set productions, we would like to find the non-
conflicting subset of the conflicting nonterminals with the highest rating of all nonterminals. The

Proc. GT-VMT 2008 10/ 14

Eﬁ ECEASST

Start symbol
.] (e

f

Figure 7: Top part of an exemplary derivation DAG with three set productions and root S. Con-
flicts between nonterminals are depicted by fat red arrows marked with crosses.

better the result is, i.e., the higher the final rating for the start symbol (which is decreased by
every nonterminal omitted), the better the ambiguity resolution is, because a higher rating means
more components, more complex components and more drawing precision.

The basic idea for the heuristic is to prefer nonterminals (i) with a high rating, (ii) with
few conflicts, (iii) whose conflicting nodes have low ratings, and (iv) which are part of many
matches of contexts for embedding productions. A ratio is calculated for each nonterminal nz.
Let embed(nt) be the set of all embedded edges where nt is one edge of the match of their
context; the ratio r is calculated as

N rating(nt) + Y {rating(e)|e € embed (nt)}
r(nt) = Y {rating(c)|(nt,c) € conflict}

The heuristic then works as follows: as long as there are conflicts, the nonterminal with the
lowest ratio is omitted, and the ratios of its conflicting nonterminals are increased accordingly.
If the start symbol cannot be deduced any more, because the last nonterminal of a set production
is omitted, backtracking is applied and the next nonterminal is tried. We found that this very
simple approach works well in practical cases, producing meaningful results quickly.

Therewith it is explained how the symmetric conflict relation must be exploited to generate
derivation DAGs which are correct, i.e., which do not use terminals that must not occur in the
same DAG due to the exclude relation introduced in the previous section. The ambiguities shown
in the introductory example in Fig. 1 now can be solved in the desired manner. The RAM and
a schematic representation of its DAG is shown in Fig. 8. The thin dashed arrows depict the
matches for the contexts for the two arrows. Note that, due to the CNF, the one nonterminal
Place cannot be the parent of the two terminals t_place and t_token. However, for the
sake of clarity, we do not show the correct representation, which requires artificially generated
nonterminal symbols.

Given that places and transitions in Petri nets are similarly rated, the decision about which
components to omit depends on the embedded arrows. For Fig. 1, the leftmost place and the
rightmost transition will be omitted, which is exactly the result we initially described. In general,

11/14 Volume 10 (2008)

Ambiguity Resolution for Sketched Diagrams by Syntax Analysis Eﬁ

f Net Schematic DAR

J ! /9&
[pPlace] [Place] [Place Trans Trans

(excludeg “.‘ exclude)
t_place - ->| t_place | v | t_trans | \d | t_place K— - t_trans
i L = < I
_ Reduced hypergraph model with exclusions /

Figure 8: Reduced hypergraph model as shown in Fig. 5, and a schematic representation of the
corresponding derivation DAG.

there may be a number of correct derivation DAGs. We then choose the one with the highest rated
start symbol.

5 Related Work

Using context allows the machine to automatically decide for an interpretation in case of am-
biguity. The alternative is to have the user explicitly make a choice. This is called media-
tion [MHAOQ]. Various strategies are conceivable, e.g., providing the user with a list of possible
interpretations and let him decide, or requiring the user to redraw an ambiguous symbol. Espe-
cially the latter is limited in applicability. In our case, places and tokens in Petri nets are both
drawn as a circle (cf. Fig. 1). Redrawing this circle obviously cannot resolve this ambiguity.
Providing a list would help here, but is very uncomfortable for the user.

Some approaches decide for a possible interpretation without explicit user interaction, but
neglect context information for this decision. For example, LADDER compares only the am-
biguous components, not regarding context, and uses simple rules to prune alternatives, at the
risk of preserving a wrong interpretation [HDOS5].

An approach by [ADO06], limited to the domain of mechanical drawings, merges automatic
decisions and user interaction. The system collects evidence from the drawing, based on rules.
Additionally, each component is scored. Based on the evidence and the score, alternatives are
pruned by a greedy algorithm. The algorithm is not able to undo its decisions, thus the result
may not be optimal. In case of a wrong decision, the user can indicate that another possible
interpretation is to be taken.

We are aware of only one other approach to sketching that treats ambiguity resolution with a
grammar-based approach. It is based on so-called sketch grammars [CDPR04, CDRO6]. Unlike
our approach, diagram analysis is not separated into a reducer and a parser. Instead, the parser
is directly applied. Parsing is directed by probabilities and rankings (similar to the ratings we

Proc. GT-VMT 2008 12/14

Eg ECEASST

use) in order to avoid processing of unlikely interpretations. The used grammar is not based
on hypergraphs, but extends positional grammars, which themselves extend traditional string
grammars by more general relations than concatenation. For the actual parse process, only little
detail is published. The concept of NACs is not employed. Result of the parser is a forest of
ranked derivation trees, each representing a valid interpretation of the drawing. The user can
then choose the desired representation.

Both recognition and ambiguity resolution works different for (handwritten) text, which we do
not want to cover with our approach. Various methods are reported for this issue. For example,
characters can be disambiguated by use of vocabularies, words can be disambiguated by statisti-
cal methods like Hidden Markow Models, language models, or specialized statistical grammars
like PCFG (probabilistic context-free grammar) [PS00, ZCB06, HLBOO].

6 Conclusion and Future Work

In this paper we explained an approach to ambiguity resolution in sketched diagrams using a
hypergraph-grammar-based approach. Omission of components due to NACs is deferred as long
as possible, until the parser needs a decision to go on. Using Petri nets as example we moti-
vated the basic ideas. Applicability is restricted because of an NP-complete problem. We have
implemented the presented approach as an extension of DIAGEN. Practical results suggest that
the heuristic we apply works well, and quickly computes a result. We will inspect this restric-
tion further, both from a theoretical and practical point of view. Graph grammars without set
productions do not suffer from this issue.

The shown approach is incremental, i.e., modifications to the diagram do not require analysis
from scratch. When components are added to the diagram, respective components edges are
created, and all possible relationships of these components edges are checked. The reducer then
only regards the newly created edges, and so does the parser, which modifies existing derivation
DAGs. When diagram components are removed, the situation is similar.

Although we use the approach for ambiguity resolution in the context of sketching, regular
graph parsers may benefit from the shown approach as well, as feedback in case of misplaced
components (leading to a syntactically incorrect diagram) may be improved. The very strict
behavior of the DIAGEN reducer, as shown in Sec. 2, suggests that feedback is very coarse
and does not aid very much in finding misplaced components. What happens is that maximum
sized subdiagrams with correct syntax are highlighted. Using our approach, the size of these
subdiagrams may be increased.

Metamodel-based approaches have gained popularity in recent years. As future work, we
would like to find out how DIAMETA, as a metamodel-based approach and an extension of
DIAGEN, can benefit from the shown results as well, and how and to what extent they can be
applied. Then we can compare the graph-based and the metamodel-based approaches.

Bibliography

[ADO6] C. Alvarado, R. Davis. Resolving ambiguities to create a natural computer-based
sketching environment. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses. P. 24.

13/14 Volume 10 (2008)

Ambiguity Resolution for Sketched Diagrams by Syntax Analysis E}

[BMO8]

[CDPRO4]

[CDRO6]

[FNTZ00]

[HDO5]

[HLBOO]

[Kar72]

[LVO2]

[MHAO0]

[Min02]

[Min06]

[PS00]

[ZCBO06]

ACM, New York, NY, USA, 2006.

F. Brieler, M. Minas. Recognition and Processing of Hand Drawn Diagrams Using
Syntactic and Semantic Analysis. In Proc. AVI "08. ACM, 2008.

G. Costagliola, V. Deufemia, G. Polese, M. Risi. A Parsing Technique for Sketch
Recognition Systems. In Proc. VL/HCC ’04. Pp. 19-26. IEEE Computer Society,
Washington, DC, USA, 2004.

G. Costagliola, V. Deufemia, M. Risi. A Multi-layer Parsing Strategy for On-line
Recognition of Hand-drawn Diagrams. In Proc. VL/HCC ’06. Pp. 103-110. IEEE
Computer Society, Washington, DC, USA, 2006.

T. Fischer, J. Niere, L. Turunski, A. Ziindorf. Story Diagrams: A New Graph Gram-
mar Language Based on the Unified Modelling Language and Java. In Ehrig et al.
(eds.), Theory and Application of Graph Transformation (TAGT’98), Selected Pa-
pers. Volume 1764, pp. 296-309. Springer, 2000.

T. Hammond, R. Davis. LADDER, a sketching language for user interface develop-
ers. Computers & Graphics 29(4):518-532, 2005.

J. Hu, S. G. Lim, M. K. Brown. Writer independent on-line handwriting recognition
using an HMM approach. Pattern Recognition 33(1):133-147, 2000.

R. Karp. Reducibility among Combinatorial Problems. In Miller and Thatcher (eds.),
Complexity of Computer Computations. Plenum Press, New York, 1972.

J. de Lara, H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-
modelling. In Proc. FASE ’02. Pp. 174-188. Springer-Verlag, London, UK, 2002.

J. Mankoff, S. E. Hudson, G. D. Abowd. Interaction techniques for ambiguity res-
olution in recognition-based interfaces. In Proc. UIST "00. Pp. 11-20. ACM Press,
New York, NY, USA, 2000.

M. Minas. Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Journal of Science of Computer Programming 44(2):157-180,
2002.

M. Minas. Generating Meta-Model-Based Freehand Editors. In Electronic Commu-
nications of the EASST, Proc. GraBaTs ’06. September 2006.

R. Plamondon, S. N. Srihari. Online and off-line handwriting recognition: a com-
prehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence
22(1):63-84, 2000.

M. Zimmermann, J.-C. Chappelier, H. Bunke. Offline Grammar-Based Recognition
of Handwritten Sentences. IEEE Transactions on Pattern Analysis and Machine In-
telligence 28(5):818-821, 2006.

Proc. GT-VMT 2008 14 /14

	Introduction
	Hypergraph Grammars and Parsing in DiaGen
	Sketching-related Modifications to the Reducer
	Sketching-related Modifications to the Parser
	Related Work
	Conclusion and Future Work

