
Electronic Communications of the EASST
Volume 10 (2008)

Proceedings of the
Seventh International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

Reconfiguration of Reo Connectors Triggered by Dataflow

Christian Koehler, David Costa, José Proença, Farhad Arbab

13 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Reconfiguration of Reo Connectors Triggered by Dataflow

Christian Koehler, David Costa, Jośe Proença, Farhad Arbab

CWI, Amsterdam

Abstract: Reo is a language for coordinating autonomous components in dis-
tributed environments. Coordination in Reo is performed by circuit-like connectors,
which are constructed from primitive, mobile channels with well-defined behaviour.
While the structure of a connector can be modeled as a graph, its behaviour is com-
positionally defined using that of its primitive constituents. In previous work, we
showed that graph transformation techniques are well-suited to model reconfigu-
rations of connectors. In this paper, we investigate how the connector colouring
semantics can be used to perform dynamic reconfigurations. Dynamic reconfigu-
rations are triggered by dataflow in the connector at runtime, when certain struc-
tural patterns enriched with dataflow annotations occur. For instance we are able to
elegantly model dynamic Reo circuits, such as just-in-time augmentation of single-
buffered channels to a circuit that models a channel with an unbounded buffer. Addi-
tionally we extend Reo’s visual notation and the Reo animation language to describe
and animate dynamically reconfiguring connectors.

Keywords: Coordination, reconfiguration, graph transformation, animation.

1 Introduction

The coordination paradigm provides models for describing the communication among the com-
ponents in a composed system. Coordination languages, such as Reo [Arb04], describe the ‘glu-
ing’ of loosely coupled components, such that a desired system behaviour emerges. The achieved
separation of business logic and coordination of the active entities leads to a much cleaner design
and helps to handle the greater complexity of large applications. Reo can be applied in various
distributed scenarios—from service-oriented to grid computing—as the coordination model is
exogenous and independent from the actual component implementation and infrastructure.

In a Reo network, software components are autonomous, self-contained entities that commu-
nicate with the outside world via a published interface. To avoid dependencies and to achieve
a truly modular, distributed system, Reo proposes the notion of connectors which are used to
coordinate the components without their knowledge. By this, the system is divided into two or-
thogonal aspects: 1) the computation, performed by the components and 2) the coordination of
these independent components, performed by the connectors. A major advantage of this design
is the ability of changing the topology of the connector, and thereby the behaviour of the system.

The configuration of a Reo connector consists on the interconnection between the structural
elements of the connector, together with their states. Communication with the components may
change the state of the connector, but not its topology. In this paper, we considerreconfigurations
of a connector as high-level transformations of its underlying graph structure. Using the theory

1 / 13 Volume 10 (2008)

Reconfiguration of Reo Connectors Triggered by Dataflow

of typed, attributed graph transformation, we can directly apply many useful results, such as
termination and confluence theorems [KLA07].

In this paper, we explore the interplay between the data flow in a connector and its reconfigura-
tions. For this, we include the connector colouring semantics into the patterns of transformation
rules. Transformations are automatically applied depending on the structure, the state and the
context of a connector. Connectors are reconfigured at run-time based on this information. This
leads to a powerful notion of dynamic connectors. We illustrate the principles through the exam-
ple of a dynamically growing buffer.

Related Work The logicReCTL*was introduced in [Cla08] to reason about connector recon-
figuration in Reo. The reconfigurations are performed using the basic primitive operations of the
Reo API, e.g. channel creation or node splitting. Up to now we have not provided a technique
to reason about our dynamic high-level reconfigurations. However, we plan to look at model
checking techniques for graph transformation as proposed in [Ren03a].

Architectural Design Rewriting(ADR) [BLMT07] is a framework for general reconfigurable
software architectures. As in our approach, reconfigurations are modeled using graph transfor-
mation rules. Reconfigurations occur at run-time whenever the system evolves to a configuration
that violates the architectural style of the system. In our case we do not fix the use of the recon-
figuration to any particular purpose. The dynamicFIFO introduced in this paper can be seen as
an example of the use of reconfiguration to guarantee dataflow. If a write operation is performed
while the buffer is full, the buffer is reconfigured to allow data to be stored and dataflow to occur.
ADR is not tied to any architectural style (e.g. client-server, peer-to-peer) while in our case, Reo
determines the architecture.

A systematic introduction to animations based on graph transformation concepts was given in
[Erm06]. The animation language for Reo that we use in this paper was introduced in [CP07].
It is important to note that the animation language for Reo is not based on graph transforma-
tion. Instead the authors introduce an abstract animation language that can be used to compute
animation descriptions for a connector compositionally out of the descriptions of its constituent
primitives.

Structure of the paper This paper is organised as follows. Section2 gives a general introduc-
tion to Reo by introducing the notions of channels, nodes and connectors. An overview of the
colouring semantics for Reo is given in Section3. We recall the concepts of graph-based recon-
figurations and provide our contributions to dynamic reconfigurations in Section4. We discuss
the proposed model in Section5. The status of the current implementation and plans for future
work are given in Sections6 and7, respectively.

2 Reo Overview

Reo is an exogenous coordination language where complex connectors are compositionally built
out of simpler ones. The simplest (atomic) connectors in Reo consist of a user defined set of
channels, each of which with its particular constraint policy.

Proc. GT-VMT 2008 2 / 13

ECEASST

A channel is a medium of communication with exactly two directed ends. There are two types
of channel ends:sourceandsink. A source channel end accepts data into its channel. A sink
channel end dispenses data out of its channel.

A channel can connect two components or be composed with other channels using Reo nodes
to build more complex connectors. Reo nodes are logical places where channel ends coincide.
A node with only source channel ends is a source node; a node with only sink channel ends is a
sink node; and finally a node with both source and sink channel ends is a mixed node. We use
the termboundary nodesto refer indistinguishably to source and sink nodes. Boundary nodes
define the interface of a connector. Components connect to and interact anonymously with each
other through the interface of the connector by performing I/O operations on its boundary nodes:
takeandreadoperations on sink nodes, andwrite operations on source nodes.

Reo fixes the constraint policy for the dataflow in Reo nodes. Data flows through a node only
if at least one sink channel end is pushing data and all the source channel ends canaccepta
copy of the data. In case more than one sink channel end is pushing data, one is picked non-
deterministically and all the others are excluded. Data cannot be stored in a node, hence its
constraints on dataflow and exclusion must propagate through the connector.

Resolving the composition of the constraint policies of a connector consisting of several chan-
nels and nodes is a non-trivial task. In Figure1 we present two examples of Reo connectors
that illustrate how non-trivial dataflow behaviour emerges from composing channels using Reo
nodes. The constraints propagate through the (synchronous regions of the) connector to the
boundary nodes. The propagation enables a certain context-awareness in connectors. A detailed
discussion of this can be found in [CCA07].

(a) (b)

Figure 1: (a) exclusive router, (b) ordering connector.

The two connectors in Figure1 involve, in total, four different types of channels. We represent
mixed nodes as filled circles (), and boundary nodes as empty circles (). TheSyncchannel
() synchronously takes a data item from its source end and makes it available at its sink
end. This transfer can succeed only if both ends are ready to communicate. TheLossySync
() has the same behavior, except that it does not block if the receiver cannot accept data.
In this case, the written data item is accepted and destroyed by the channel. TheFIFO1 ()
is an asynchronous channel that has a buffer of size one. Unlike the prior channels,FIFO1 is
a stateful channel. TheSyncDrainchannel () has two source ends through which it can
only consume data, and no sink ends. Its behavior can be described as follows: if there are data

3 / 13 Volume 10 (2008)

Reconfiguration of Reo Connectors Triggered by Dataflow

items available at both ends, it consumes (and looses) both of them atomically.
The exclusive router, shown in Figure1a, routes data fromA to eitherB or C. The connector

can accept data only if there is a write operation at the source node A, and there is at least one
component attached to the sink nodes B or C, which is performing a take operation. If both
B andC have a take operation, the choice of whether data is routed to B or C is made non-
deterministically by the mixed nodeI . NodeI can accept data only from one of its sink ends. To
the other end it gives an exclusion reason for data not to flow, which forces theLossySyncto lose
the data.

The second connector, shown in Figure1b, imposes an ordering on the flow of the data from
the input nodesA andB to the output nodeC. TheSyncDrainenforces that data flows throughA
andB synchronously. The empty buffer together with theSyncDrainguarantee that the data item
obtained fromA is delivered toC whereas the data item obtained fromB is stored in theFIFO1

buffer. At this moment the buffer of theFIFO1 is full and data cannot flow in through eitherA
or B, butC can obtain the data stored in the buffer. The buffer is then empty again.

These informal descriptions of the behavior of connectors can be formalised using the con-
nector colouring semantics, introduced in [CCA07]. The colouring semantics is used to generate
animations and to implement Reo, and we discuss it in Section3.

Reo offers a number of operations to reconfigure and change the topology of a connector
at run-time. Operations that enable the dynamic creation of channels, splitting and joining of
nodes, hiding internal nodes and more. The hiding of internal nodes is important concerning
reconfiguration, because it allows to fix permanently the topology of a connector, such that only
its boundary nodes are visible and available. The resulting connector can be viewed as a new
primitive connector, or primitive for short, since its internal structure is hidden and its behaviour
is fixed. Reconfiguration is impossible on a primitive. We have the basic primitives that include
the user defined channels, the Reo nodes, and the I/O operations. Plus the non-basic primitives
constructed through the use of the hiding operation.

3 Connector Colouring Semantics

Connector Colouring semantics is based on the idea of colouring a connector using a set of
coloursColour. We consider a setColour with three colours as in Clarke et al. [CCA07]. One
dataflow colour () to mark places in the connector where data flows and two colours for
no-dataflow (,) to mark the absence of dataflow. The reason for having two distinct no-
dataflow colours is to be able to trace the exclusion constraints responsible for the no-flow back
to their origins. Graphically, the arrow indicates the direction of exclusion, i.e. it points away
from the exclusion reason and in the direction that the exclusion propagates.

Colouring a Reo connector in a specific state with given boundary conditions (I/O operations)
provides a means to determine the route alternatives for dataflow. Each colouring of a connector
is a solution to the synchronization and exclusion constraints imposed by its channels and nodes.

The dataflow allowed by a connector is collected in acolouring tablewhose elements—
colourings—are functions mapping each node of the connector to acolour. The different colour-
ings present in a colouring table of a connector correspond to the alternative ways that the con-
nector can behave in the different contexts where it can be used.

Proc. GT-VMT 2008 4 / 13

ECEASST

We recall some essential definitions from [CCA07] that formalise the notion of a colouring
and of a colouring table. LetNodebe a finite set of node names.

Definition 1 (colouring) A colouring c: N→ Colour for N⊆Nodeis a function that assigns
a colour to every node of a connector.

Definition 2 (colouring table) A colouring table Tover nodesN⊆Nodeis a set of colourings
with domainN.

To give semantics to a Reo connector using connector colouring one must provide the colour-
ing tables for the user defined primitives, the channels, used in the construction of that connector.
Table1 shows the channels we use in this paper and their respective colouring tables. We high-
light a few points of interest in this table, focusing only on reasons to exclude dataflow. No
dataflow at one end of aSyncor SyncDrain, is enough to prevent dataflow in the all channel. The
reason is propagated to the other end. An emptyFIFO1 buffer does not enable data flow on its
output end, giving a reason for no dataflow. Dually, a fullFIFO1 buffer gives a reason for having
no dataflow on its input end. The second entry of the table for aLossySyncstates that it will lose
the data only when a reason for no dataflow is propagated into its output end, which amounts to
saying that the channel is unable to transfer the data.

Reo fixes the colouring tables for the other primitives: nodes and the I/O operations. The
Table 2 gives a brief account of the connector colouring semantics for these primitives. To
comply with the page limit we omit the general colouring table of Reo mixed nodes. We give an
example of one possible colouring for a Reo mixed node with 3 source ends and 2 sink ends. For
the purpose of this paper that should suffice without compromising the understanding of what
follows. For a full description we refer to [CCA07].

Definition 3 (primitive) A labelled tuple(n j1
1 , . . . ,n jk

k)c represents a primitive connector,c,
where for 0< ` ≤ k, n` ∈Node, j` ∈ {i,o}, k≥ 1 is the arity of the primitive, and the labelsi
ando indicate a source node or a sink node respectively, such that a noden appears at most asni

and/orno in (n j1
1 , · · · ,n jk

k)c. A primitive with colouring is a pair of a primitive with a colouring
tableT whose domain ranges over the nodes of the primitive.

(ni
1,n

o
2)Sync (ni

1,n
i
2)SyncDrain (ni

1,n
o
2)LossySync (ni

1,n
o
2)FIFO1 (ni

1,n
o
2)FIFO1[x]

Table 1: User defined channels, and their colouring tables.

A connector is a collection of primitives composed together, satisfying some well-formedness
conditions. As such, the colouring table of a connector is computed from the colouring tables of
its constituents.

5 / 13 Volume 10 (2008)

Reconfiguration of Reo Connectors Triggered by Dataflow

(ni
1,n

i
2,n

i
3,n

o
4,n

o
5)Node (ni)Write (no)Take

Table 2: Reo primitives, and their colouring tables.

Definition 4 (connector) A connectorC is a tuple〈N,B,E,T〉 where,N is the set of nodes that
appear inE; B⊆ N is the set of boundary nodes;E is a set of primitives;T is a colouring table
overN; such that (1)n∈ B if and only if n appears exactly once inE, and (2)n∈ N \B if and
only if n occurs exactly once asno and asni in E.

A primitive with a colouring table can straightforwardly be considered as a connector. A
connector’s semantics is computed by joining the tables of its constituents. Two colourings can
only be composed if the common nodes in their domains are coloured with the same colour.

Definition 5 (join) LetCk = 〈Nk,Bk,Ek,Tk〉 with k∈ {1,2} be connectors such that(N1\B1)∩
(N2\B2) = /0, and for eachn∈ B1∩B2, ni appears inE1 andno appears inE2, or vice versa. The
join of C1 andC2, is given by:C1�C2

.= 〈N1∪N2,(B1∪B2)\ (B1∩B2),E1∪E2,T1 ·T2〉, where
· is the join operator for two colouring tables defined as:

T1 ·T2
.= {c1∪c2 | c1 ∈ T1,c2 ∈ T2,n∈ (dom(c1)∩dom(c2))⇒ c1(n) = c2(n)}.

Figure2 depicts two colourings of the ordering connector of Figure1(b). In both colourings,
a component is connected to each boundary node and performs an I/O operation:Write on both
source nodes andTakeon the sink node. The colouring in (a) describes the dataflow behaviour

(a) (b)

Figure 2: (a) and (b) are two possible colourings of the ordering connector.

of the connector when the buffer is empty, indicating that data flows through the entire connector
except for the sink end of theFIFO1 channel, data is stored in the buffer, and all three I/O
operations succeed. This dataflow changes the state of theFIFO1 channel, changing also its
colouring table. The colouring in (b) describes the dataflow behaviour of the connector when the
buffer is full. This colouring states that data flows in the connector only at the sink end of the

Proc. GT-VMT 2008 6 / 13

ECEASST

FIFO1[x] channel, the buffer is emptied, the take operation on nodeC succeeds, and the write
operations on nodesA andB are delayed.

Figure3 depicts the two colourings of the exclusive router that are the valid behaviour alter-
natives when a component is connected to each boundary node and performs an I/O operation:
Write on the source node andTakeon both the sink nodes. The colouring in (a) describes the

(a) (b)

Figure 3: (a) and (b) are two possible colourings of the exclusive router.

dataflow behaviour of the connector when the mixed nodeI picks, non-deterministically, node
B to route the data to. Alternatively the colouring in (b) describes the dataflow behaviour of the
connector when the mixed nodeI picks, non-deterministically, nodeA to route the data to.

4 Connector Reconfiguration

It has been shown in [KLA07] that the theory of graph transformation can be applied to model
connector reconfigurations as high-level transformations of their underlying graph structures.
The approach allows to define reconfigurations at a high level of abstraction and therefore can
be used to model complex reconfigurations, e.g. refactorings. While in the previous work, we
considered these techniques in the context of business process customisation, we combine now
these transformations with the connector colouring semantics, described in Section3.

4.1 Reconfiguration Triggered by Dataflow

Dynamic reconfigurations are transformations of connectors at run-time. In the following, we
present a framework that allows to define such dynamic reconfigurations by annotating transfor-
mation rules with colourings, which leads to a notion of dynamic connectors.

To use graph transformation for connector reconfiguration we make the following assump-
tions. Connectors are considered as typed, attributed graphs in the following way: i) Reo nodes
are vertices of the graph and ii) channels are its edges. The typegraph in this scenario consists
of a single node and one edge for each channel type. Edge attributes are used to model channel
properties, e.g. the content of a fullFIFO1. Since channels in Reo are not necessarily directed
(cf. theSyncDrainchannel) we simply assert an underlying direction of the channel to fit the
formal model of directed graphs that is usually assumed. Note also that we have given a formal
definition of connectors in [KLA07] and showed that it indeed forms an adhesive High-Level
Replacement category [EEPT06].

7 / 13 Volume 10 (2008)

Reconfiguration of Reo Connectors Triggered by Dataflow

We use the Double-Pushout (DPO) approach [EEPT06] for our connector reconfigurations.
Our transformation rules are an extended version of the usual spans of morphisms in the DPO
approach. We write a connector reconfiguration rule as

p = (Colour
c←− L

l←− K
r−→ R)

whereL,K andR are connectors (typed, attributed graphs),l , r are connector (typed, attributed
graph) homomorphisms andc is a (potentially partial) colouring for the left-hand side of the
rule. The rationale behind this extension is that we do not just want to match the structure
of a particular connector part, but also its state and the current execution strategy. Note that
this introduces a certain asymmetry to the rules, caused by the fact that only the left-hand side
is coloured. This is also the reason why we do not model the colouring as attributes of the
graphs. Such an extended rule can be applied with respect to a given matchL

m→M and a current

colouringM
k→ Colour iff

1. the gluing condition holds (see [EEPT06] for more details); and

2. the rule colouring matches the current colouring:c = k◦m.

With the latter constraint we extend the pattern of a rule, in the way that a specific colouring has
to be matched as well. A transformation rule can and will be applied only if the structure can
be matched and a specific behaviour occurs. The extended version of the DPO approach can be
summarised as shown in the diagram

Colour L K R

M C N

(PO) (PO)=

loo r //

m

�� �� ��
oo //

coo

k

ddIIIIIIIIII

whereColour is a fixed set of possible flow-colours andc andk are colourings. Including the
colourings of a connector part makes the pattern matching much more restrictive. In fact, it is
so restrictive now that the reconfiguration rules can be invoked by the Reo engine without ‘su-
pervision’. The transformation system becomes in some respect autonomous. The connector is
transformed when necessary, without the need for an external party to trigger the reconfiguration.

Figure 4: reconfiguration rule for a dynamicFIFO.

Figure4 shows a reconfiguration rule for a dynamic (unbounded)FIFO. The matches from
the LHS to the RHS are indicated by using the same node labels. The reconfiguration rule
gives rise to a dynamic connector, which we callFIFO∞. TheFIFO∞ consists of a sequence
of FIFO1 channels and a reconfiguration rule. The reconfiguration adds a newFIFO1 in the

Proc. GT-VMT 2008 8 / 13

ECEASST

beginning whenever theFIFO∞ is full and someone tries to write to it assuring that way that the
write can succeed and the data can flow and be stored in the buffer. The left-hand side matches an
arbitrary full FIFO1 with contentx where someone tries to write to. The reason for the no-flow
is the fact that theFIFO1 is full already, not that there is no data available. If this pattern can be
matched, the rule states that the original channel is destroyed and two newFIFO1 channels are
created in its place. The secondFIFO1 is filled with the original contentx.

However, the rule as it is now does not reflect our initial requirement that only the firstFIFO1

in the sequence is replaced by two new ones. This can achieved by adding negative application
conditions [EEPT06] as shown in Figure5. We need two extra NACs for the dynamicFIFO∞

Figure 5: negative application conditions for theFIFO∞.

that restrictwherethe rule can be applied. An emptyFIFO1 should always be added at the very
beginning of the sequence. Expressed as negative application conditions, this means that there
must not be an empty or a fullFIFO1 in front of the one where the original rule (Figure4)
applies.

These additional restrictions allow us to apply the transformation rule automatically at runtime
when the colouring occurs. For completeness we would have to define also an inverse rule that
shrinks the connector again. We omit this here.

4.2 Run of a connector

Connectors are executed in an abstract Reo engine. The Reo engine includes two independent
components, one to compute colouring tables and to perform the dataflow, and one for computing
reconfiguration matches and executing the transformations. We refer to these components asDf
and Tr respectively. Reconfiguration rules are applied locally only in specific regions of the
connector. These regions can be formally viewed as disjoint sub-graphs that restrict the domain
of the transformations. These regions are the reconfigurable parts of the connector. Each of these
regions has a number of reconfiguration rules attached to it, such as the one in Figure4.

The Reo engine utilisesDf andTr to execute dynamic connectors. In this scenario a run of
the engine consists of performing the following actions:

1. Invoke Df to compute the colouring tableCT of the connector for the actual boundary
conditions.

2. Choose non-deterministically a colouringk from the colouring tableCT.

3. For each reconfiguration region, invokeTr to find pattern matchesm1, . . . ,mn for the
colouringk.

4. InvokeDf to execute the dataflow according tok. The state of the connector is updated.

9 / 13 Volume 10 (2008)

Reconfiguration of Reo Connectors Triggered by Dataflow

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: run of theFIFO∞.

5. For each pattern match inm1, . . . ,mn, invokeTr to perform the transformations.

Since the steps3 and4 are independent from each other, they can be performed in parallel. Note
also that in general, multiple transformation policies could be supported, e.g. apply at most once
or until it is not applicable anymore.

Figure6 depicts a run according to the descriptions above, for theFIFO∞. Part (a) shows
the basic connector that we want to reconfigure. It consists of a single emptyFIFO1 with a
Write operation. The region where the transformation rule from Figure4 should be applied is
delimited by the dashed box. Part (b) shows the colouringk1 and the corresponding dataflow. The
transformation engine is invoked with a snapshot of the reconfiguration region and the colouring
k1. Since the rule does not match colouringk1 no transformation is performed. In part (c) we see
how the dataflow has changed the state of theFIFO1 and that the write operation disappeared
after succeeding. In part (d) a new write operation is attached to the connector. At this point
a new run of the engine starts. Figure6e shows that the new write operation cannot succeed
because theFIFO1 is already full. This event is formally observed by the no-flow colouring
k2. The transformation engine is invoked again and returns a matchm this time, becausek2

matches the colouring of the reconfiguration rule. Since no dataflow has to be performed, the
transformation can immediately be applied, as shown in Figure6f. The reconfigured connector
is shown in part (g). At this point, the write operation succeeds, and the corresponding colouring
k3 is depicted in part (h). There is no rule that matchesk3, since the only possible match with
the full FIFO1 is restricted by NAC 1, defined in Figure5. In Figure6i we show the state of the
connector after the dataflow, whereas the write operation is removed and the leftFIFO1 becomes
full.

The visual representation we use is based on an extension of the animation language intro-
duced in [CP07]. We use the colour green to highlight the part of the connector that matches
the left-hand side of the rule, as depicted in the region inside the dashed box in Figure6f, and

Proc. GT-VMT 2008 10 / 13

ECEASST

the connector that appears below corresponds to the right-hand side of the rule. The dashed blue
arrows in Figure6f, pointing from the match to the substitute connector, indicate that the nodes
A andB are preserved by the transformation. Furthermore, the colour of the new data token
matches the colour of the data token in the matched part of the connector, expressing that the
argument of the fullFIFO1 channel is the same as the argument of the new fullFIFO1.

5 Discussion

Up to now we have shown that by applying graph transformation techniques to Reo, we are
able to describe complex connector reconfigurations using a very compact notation. Transfor-
mation rules are extended with colouring information so that they can be applied when a certain
behaviour occurs. External invocation of the transformation is not required.

In the current setup, the transformation engine is invoked in each run of the execution of
the connector. Even if the required colouring is not present, the engine first tries to match the
structural pattern of the current connector and then validates its colouring. If the reconfiguration
regions become larger, the pattern matching can cause a significant degradation of performance.
Note that general pattern matching for graphs is a problem that is known to be NP-complete.

Figure 7: rule for aFIFO∞ with an evolving reconfiguration region.

To improve the performance of dynamically reconfiguring connectors, we suggest the follow-
ing optimisation. We augment the transformation rules with information about the reconfigura-
tion regions. For our example of the dynamicFIFO we extend the rule as shown in Figure7.
The dashed boxes mark the reconfiguration regions. With this extension we can state that the
rule is always applied to the firstFIFO1. While before the reconfiguration region was growing
with each application of the rule, it will now remain as consisting of exactly two nodes and one
FIFO1 only, all the time. This way, the pattern matching is much faster and (in the ideal case)
always uniquely determined.

6 Implementation

Reo as a modelling framework The Reo modelling framework [ECT] consists of a set of
plug-ins for the Eclipse1 development environment such as: a graphical editor, a model checker
and a Flash-based animation tool.

Executable instances of connectors can be derived by generating code from Reo specifications
or by interpreting these specifications. We generate code from abstract animation descriptions

1 http://www.eclipse.org

11 / 13 Volume 10 (2008)

http://www.eclipse.org

Reconfiguration of Reo Connectors Triggered by Dataflow

when producing the Flash animations [CP07]. We have implemented an interpreter2, based on
the colouring semantics, for the application domain of web services. Currently we are integrating
the dynamic reconfiguration scheme into the interpreter.

Reo as a runtime architecture We are also developing a distributed Reo engine [Pro07],
where each primitive is deployed and executed as an independent block running in parallel with
the other primitives. There is no centralized entity computing the colouring table of the compos-
ite connector at each step, but instead the colouring table is obtained by distributed agreement.
The engine has a mechanism to pause regions of the connector, making them suitable to be re-
configured. However, since the development is still in an early stage we are not able to integrate
the dynamic reconfiguration yet.

7 Future work

The example of the dynamicFIFO is certainly very basic. In general, there may be more than
one reconfiguration rule (a graph grammar) attached to a region of a connector. The role that
the colouring extension in our rules plays in these more complex scenarios must be investigated.
Furthermore, we need to make the notion of the evolving reconfiguration regions, as suggested
in Section5, more specific. Additional partial mappings from the LHS to RHS may be a possible
approach to model this.

We are interested in preservation of behavioural properties by transformations. Two different
classes of transformations are interesting in this setting: transformations that preserve the be-
haviour and transformations that change it. On the one hand, reconfigurations that do not change
the behaviour are interesting in the area of automated refactoring and optimisation. On the other,
reconfigurations that change the behaviour can be used to implement new sub-circuits that adapt
the behaviour of a circuit based on dataflow. In this context, it will be interesting to do static
analysis of reconfiguration rules to reason about behaviour preservation.

Finally, we want to integrate the dynamic reconfiguration triggered by dataflow into the Reo
tools. For this purpose, we will extend both the Eclipse based development tools and the Reo
runtime engine for web services. Since we model reconfiguration through graph transformation,
and due to the fact that our implementation of the Reo development tools is based on the Eclipse
Modeling Framework (EMF)3, we plan to implement the reconfiguration extensions using the
Tiger EMF Transformation tools [EMT].

Bibliography

[Arb04] F. Arbab. Reo: a Channel-based Coordination Model for Component Composition.
Mathematical Structures in Computer Science14:329–366, 2004.

2 http://www.cwi.nl/∼koehler/services
3 http://www.eclipse.org/emf

Proc. GT-VMT 2008 12 / 13

http://www.cwi.nl/~koehler/services
http://www.eclipse.org/emf

ECEASST

[BEK+06] E. Biermann, K. Ehrig, C. Koehler, G. Kuhns, G. Taentzer, E. Weiss. Graphical Def-
nition of In-Place Transformations in the Eclipse Modeling Framework. InModel
Driven Engineering Languages and Systems (MoDELS’06). 2006.

[BLMT07] R. Bruni, A. Lluch-Lafuente, U. Montanari, E. Tuosto. Style-based architectural
reconfigurations. Technical report TR-07-17, Computer Science Department, Uni-
versity of Pisa, 2007.

[CCA07] D. Clarke, D. Costa, F. Arbab. Connector Colouring I: Synchronization and Context
Dependency.Sci. Comput. Program.66(3):205–22, 2007.
doi:http://dx.doi.org/10.1016/j.scico.2007.01.009

[Cla08] D. Clarke. A Basic Logic for Reasoning about Connector Reconfiguration.Funda-
menta Informaticæ82:1–30, 2008.

[CP07] D. Costa, J. Proença. Connector Animation: A Compositional Framework to Anal-
yse Reo Connectors. December 2007. Submitted. Available online:http://www.cwi.
nl/∼costa/publications/publications.htm.

[ECT] Eclipse Coordination Tools.http://homepages.cwi.nl/∼koehler/ect.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs in Theoretical Computer Science. Springer, 2006.

[EMT] Tiger EMF Transformation Project.http://tfs.cs.tu-berlin.de/emftrans.

[Erm06] C. Ermel.Simulation and Animation of Visual Languages based on Typed Algebraic
Graph Transformation. PhD thesis, 2006.

[KLA07] C. Koehler, A. Lazovik, F. Arbab. Connector Rewriting with High-Level Replace-
ment Systems. InProceedings of FOCLASA 2007, to be published in Electronic
Notes in Theoretical Computer Science. 2007.

[Pro07] J. Proença. Towards Distributed Reo. Talk presented at CIC workshop, 2007.

[Ren03a] A. Rensink. GROOVE: A Graph Transformation Tool Set for the Simulation and
Analysis of Graph Grammars.http://www.cs.utwente.nl/∼groove, 2003.

[Ren03b] A. Rensink. Towards Model Checking Graph Grammars. In Leuschel et al. (eds.),
Workshop on Automated Verification of Critical Systems (AVoCS). Technical Report
DSSE–TR–2003–2, pp. 150–160. University of Southampton, 2003.

13 / 13 Volume 10 (2008)

http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2007.01.009
http://www.cwi.nl/~costa/publications/publications.htm
http://www.cwi.nl/~costa/publications/publications.htm
http://homepages.cwi.nl/~koehler/ect
http://tfs.cs.tu-berlin.de/emftrans
http://www.cs.utwente.nl/~groove

	Introduction
	Reo Overview
	Connector Colouring Semantics
	Connector Reconfiguration
	Reconfiguration Triggered by Dataflow
	Run of a connector

	Discussion
	Implementation
	Future work

