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The GP Programming System

Greg Manning and Detlef Plump

The University of York

Abstract: We describe the programming system for the graph-transfiom lan-
guage GP, focusing on the implementation of its compilerabsdract machine. We
also compare the system’s performance with other grapisfitemation systems.
The GP language is based on conditional rule schemata anescaith a simple
formal semantics which maps input graphs to sets of outpaplgy. The imple-
mentation faithfully matches the semantics by using backing and allowing to
compute all possible results for a given input.

Keywords: GP, programming system, graph transformation, non-détésm

1 Introduction

GP is a non-deterministic graph programming language basembnditional rule schemata in
the double-pushout approachg04. The core of GP consists of just four constructs: single-
step application of a set of rule schemata, sequential ceitig@ branching and iteration. The
language is computationally completdH0] and comes with a formal semantid3$08. The
current implementation of GP consists of a graphical eddoprograms and graphs, a compiler
and the York Abstract Machine (YAM). These components comigate as shown in Figure
(where YAMG is an internal graph format of the abstract maehi

)

GP Compiler B

(extva) %‘
Graphical —
Editor /
GXL to

YAMG YAMG
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Figure 1: An overview of the GP system

We describe GP by means of an example. Consider the pragramnumspanni ng_tree
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in Figure2. This program calculates a minimum spanning tree for itatigpaph The program

mai n = pi ckNode; (addEdge; m nEdge! ; addNode)!.

pi ckNode( x: i nt)
D =
1 1
addEdge(x, a, e:int)
e e 0
=
1 2 1 2

m nEdge(x, vy, e, f,a, b:int)

=)
:’@

mat ches where f < e

addNode( x, a, e:int)
e 0 e 0
=
1 2 1 2

Figure 2: GP progranm ni nrumspanni ng_tree

consists of four rule-schema declarations and the main amdnsequence following the key
word mai n. Given an input graph whose nodes and edges are labelledntétiers, the pro-
gram first uses the rule schempackNode to choose any node and replace its labelith x_O.
The underscore operator allows to adthgto a label, where in general a tagged label consists
of a sequence of expressions joined by underscores. (Sezpiehexpressions are just ordinary
labels, allowing GP’s underlying theory to be based on adstethvariant of the double-pushout
approach rather than on some complicated model of attdgteph transformation.) This pro-
gram uses the tag 0 to mark the nodes of a spanning tree. A&émitial node has been marked,
the iteration operator ’!" executes the subprogrgaddEdge; m nEdge! ; addNode) as long
as possible. The subprogram first picks any edge betweenkadiaode and an unmarked node.
Then the loopri nEdge! repeatedly swaps this edge with an edge having a smalldy Valhere

1

A spanning tree for a directed gra@his a subgrapts of G such that the undirected graph underlyiBés a
spanning tree for the undirected graph underly@g
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the latter is checked by the conditisbner e f < e. Theflagal | nat ches allows this rule
schema to be matched non-injectively whereas the defa@#iris injective matching. After the
minimum edge between the current tree nodes and any unmiaokiedhas been determined, the
unmarked node of this edge is added to the spanning tree bylthechemaddNode. It is not
difficult to see that upon termination of the outer loop, therked nodes and edges constitute
a minimum spanning tree of the input graph. (The rule schemdtdEdge, m nEdge and
addNode are actually sets of rule schemata which are obtained frasetdepicted by revers-
ing edges in all possible waysiddEdge andaddNode consist of two rule schemata while
nmi nEdge contains four schemata. For readability, we have omittedehule schemata in Fig-
ure2.) In general, a graph can have several minimum spanning &e& the program in Figure
2 allows to compute all of them.

A leitmotiv for GP’s design has been syntactic and semaintiplicity, see alsolPS0§. There
is only one other core construct besides those occurringeimtinimum spanning tree program:
a conditional statement of the forirf C t hen P el se Q (whereC, P andQ are programs).
Our programming experience so far suggests that these fiestroots are sufficient and allow
succinct solutions to problems. It is possible though tousitte more elaborate control mecha-
nisms. Consider, for example, a conditional loop of the famn | e C do P which executes its
bodyP as long as the progra@ succeeds. An equivalent GP programii§ Ct hen P el se
fail);if Cthenfail (wherefail isan always failing program such as the empty set of
rules). As another example, the choice to apply ar@iher once or not at all can be simulated
by the rule se{r, 0 = 0} (where 0= 0 has the empty graph on both sides).

The rest of this paper is organized as follows. The next@ediriefly adresses the graphical
user interface of the GP system, Sectiimtroduces the York abstract machine and Section
discusses the GP compiler. Secti®compares the performance of the GP system with other
graph-transformation environments. In Sectiimnve conclude and give some topics for future
work.

2 Graphical Editor

The GP graphical editing environment is a Java applicatibichvallows graph and program
creation, loading, editing and saving, and program exeoutih a given graph. The outputs of
executions are then available as inputs to other progranggird=3 shows a screenshot of the
graphical editor with the rulei nEdge of Figure2 being edited. The editor visualises graphs
using the prefuse data visualisation libraRyJL0O5], which permits graph layout and editing.
The main graph drawing algorithm used is a force-directg@ua Figure5 shows a graph
drawn by this algorithm.

3 TheYork Abstract Machine

The York abstract machine (YAM) is more fully described it 0€. Here, we give an overview
highlighting the areas which have changed in the meantime.

The YAM is a backtracking graph-transformation machinechhéxecutes bytecode for low-
level graph operations. It can handle nondeterministigims and is in parts similar in de-
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Figure 3: A screenshot of the graphical editor

sign to Warren'’s abstract machine for ProlédP1]: it manages GP’s hondeterminism using a
mixed stack of choice points and environment frames. Thddmentation of backtracking in
PROGRES Ziin97 takes a WAM-like approach too, although it uses the hosguage’s call
stack rather than explicit data structures. The YAM also agas the current host graph and a
(typically) small data stack.

Figure 4 shows an example state of the choice point and environmantefrstack. Choice
points consist of a record of the number of graph changeseat theation time, a program
position to jump to if failure occurs when the choice poirthis highest on the stack, and pointers
to the previous choice and containing environment. The murabgraph changes is recorded so
that, when backtracking, the graph changes can be undoing; the stack of graph changes, the
graph as it was at the choice point is recreated. Environfremies have a set of registers to store
label elements or graph element identities, and an asedciahction and program position in
the bytecode. They also show which environment and progisitign to return to. The number
of registers each frame has is determined by the bytecodds-#bied at compile time.

The current host graph is stored in a complex data structoiaéjng use of the heavily opti-
mised Judy data structureSiy02]. The structure is designed in such a way that the graph can be
interrogated easily and very quickly, at the cost of sliglstbwer graph updates. Typical queries
to the graph structure are “edges whose target node is miode“nodes whose label has the
value 1 in position 1”. Each element (node or edge) in thetyigjabelled with a list of values,
each of which is of type integer or string. The YAM bytecodewt any query over the length
of the list or the type or value of the list elements, such #stades with a label of size two”, or
“all edges with an integer in the second position.”

The machine as presented kP06 handled nondeterminism internally. At the bytecode
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Graph Stack Changes: 25 Containing Environment: }:
CH On Failure: 24 Previous Choice:

Graph Stack Changes: 25 Containing Environment: | |
CH On Failure: 24 Previous Choice: | 0

Function: 2 Calling Environment: L
Dead Current PC: 54 Return PC: 58
ENV e [0 B 2

Function: 0 Calling Environment: m
ENV Current PC: 87 Return PC: 0

Registers | 0l 4l 2

Figure 4: An example choice/environment stack

level, the instructions effectively returned a correcutesf a choice led to a failure (and such
was a wrong choice), then the machine would trigger badkitngcand retry the choice until a
correct result was obtained. Now, however, the machine Igipyovides explicit instructions
for handling nondeterminism such @aFai | 2, Updat eFai | > andAssert 4. This change
was made to unite the failing and non-failing versions ofdh&ph queries, and to allow more
expressiveness at the bytecode level.

Using these instructions, the compiler constructs helpectfons to implement backtracking.
Nondeterministic choice between a set of graph rules islbdru trying them in textual order
until one succeeds. Before each is tried, the failure belavs configured to try the next.
Nondeterministic choice between graph-element candidatea match is handled by choosing
and saving the first element, and on failure, using the sax@dqus answer to return (and save)
the next element.

Nodes and edges are identified in the structure by integedsthee graph structure contains
many ordered lists of such integers. This allows complexXuwuive queries to be performed
by intersecting ordered lists of integers. For example,ndifig the left-hand side of the rule
addEdge in the program of Figure, having found thex_0 node, a list of potential edges is
created by intersecting the list of all edges leaving thidendhe list of all edges which haee
as their first label, and the list of all edges having a labgueace of length one. The code then
creates an environment to store the previous answer retuane uses thilext instruction to
give the first answer in the intersection which is numerjcglleater than the previous answer.
It saves this answer to the stack and returns it. If a failw@ucs whilst this choice point is on
top of the stack, the code will return the next answer. Whenetlare no more answers it will
propagate the failure to a previous choice point.

2 (OnFai | pops a code location and creates a new choice point whickunilb to that code location on failure.

3 Updat eFai | pops a choice point pointer and a code location and changeshtiice point so that it now goes
to the new location on failure.

4 Assert pops the top of stack and fails if it is zero.
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Because the underlying data structure stores the node gedef@rences in the lists as ordered
lists of integers, finding the next element in the intergecis very fast. An intersection can be
done in timeO(In), wherel is the length of the shortest list in the intersection aigithe number
of lists being intersected. Note that the entire interseds not generated in one go, the elements
of the intersection are found one at a time, as needed.

4 Compiler

The GP compiler converts textual GP programs into YAM bytlecolt does this by translating
each individual rule or macro into a sequence of instrusti@nd composing these sequences
using the YAM function calls.

4.1 Generating a searchplan for graph matching

Searchplan generation is a common technique for implemgmgiraph matchingGBG' 06,
HVV07, Zzun9qg. The GP compiler decomposes graph rules into a static Igglarc of node
lookups, edge lookups (find an edge whose source and targenlioa been found yet) and ex-
tensions (find an edge whose source or target has been folihd)choice and order of these
search operations is determined using the following piés; always preferring elements with
value labels over those with variable labels:

1. Check parts ofaher e clauses whose variables have all been bound, that is, @l lab
variables have been instantiated, and all nodes or edgase@fio have been found.

. Find nodes on the ends of edges which have been found.
. Find edges where both the start and the end node have hewh fo

. Find edges where either the start or the end node has beed. fo

g A W DN

. Find nodes where there is a negative edge condition ofotimeriot edge(v, w) at the
top level of thewher e clausé@ and eithew or w has been found.

6. Find nodes.

The nondeterminism in this list of priorities increases:endclause checks and finding nodes of
known edges are deterministic operations, finding unasttinodes is highly nondeterministic.
There will be many different plans which satisfy these fties, however since the compiler
generates static plans (that is, the host graph is not agated), there is no more information to
use in the generation. The choice between possible planads msing an ordering taken from
the programmer: elements mentioned first in the textualtipppgram will be found first. For
example, the first step in a searchplan is to find the first (ledhenode mentioned.

Both GrGen GBG'06] and Fujaba INNZ0Q] also make extensive use of searchplans. Gr-
Gen.NET BGO07] uses online searchplan generation, so that the searchpdembe recalculated
during execution. This improves the quality of the generaearchplan significantly.

5 Thatis, the negative edge condition is one of the conjuBigts.,Cy, in wher e C; and ...and C,.
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Once a match has been found, andwher e clause has passed, the remainder of the code
for the graph rule handles the changes to be made to the giidmhcompiler determines the
changes and orders them as follows: deleted edges, deletied,nrelabelled nodes or edges,
added nodes, added edges. This order ensures that no neddsleted before their incident
edges, and no edges are created before their incident nodes.

4.2 Compiling GP commands

With the individual graph rules compiled, they can be coneplasto a complete YAM program.
There are several ways of joining subprograms in GP: seglie@mposition, macro calling,
if-then-else branching, and as-long-as-possible imatlThe compilation of a sequential com-
positionP; Q is trivial: the bytecodes foP andQ are concatenated. Macro calling is achieved
by using theCal | or Tai | Cal | © bytecode instructions.

As-long-as-possible iteratiol}, is implemented as follows:

1. Create new failure behaviour to succeed (continue) duréai
2. ExecuteP once.

3. Change failure from instruction 1 from succeed to failvidg a failure behaviour which
simply fails is the same as having no failure behaviour athalvever, failure behaviours
cannot be removed since they may be referenced elsewhdre @tatck.

4. Go toinstruction 1.

The failure behaviour must be altered in step 3 to maintarsémantics and not an any-number-
of-times semantics.

As rule sets (apply one rule from a set) are compiled, an orglés imposed upon them. The
compiled bytecode tries the first rule, and on failure willtlhhe next rule until the end of the set
is reached. If none of the rules successfully applied, thenathole rule set fails. The ordering
imposed is the order in which the rules appear in the progean t

GP’s branching construcitf C then Pelse Q first executes the subprograton the input
graph. If this yields a result, prograkis executedn the input graph Otherwise, if all execu-
tions ofC end in failure, progran@ is executed on the input graph. The construct is compiled in
the following way:

1. Create failure behaviour to go to step 5 on failure.
2. Execute the conditio@.

3. C ear Fai | the failure point created in step 1, that is, undo the gragingés, forget
the choices back to that point and remove that failure framgleave the program pointer
unchanged.

4. Execute the then-patand succeed.

5. Execute the else-pat and succeed.

6 Tail Call is equivalent to call-then-return, but is actually impletezl as return-then-call because this saves
space on the call stack.
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5 Performance

In this section we compare the performance of the GP systeimtiae@ performance of similar
environments. We focus on a simple problem which has beeteimgnted in different graph
programming systems in the context of the AGTIVE 2007 tooitest [T[BB*08]. The task is to
generate a graph of thh generation of the Sierpinski triangle, producing oneegation at a
time. A Sierpinski triangle is a triangle split into 4 subtrgles (made by joining the midpoints
of the 3 edges), where the 3 subtriangles containing oneeobtiginal vertices are themselves
Sierpinski triangles. Sierpinski triangles are represgrds graphs using nodes as vertices of
triangles and edges as edges of triangles. As a true Sikrpiiangle has infinite detail, we
must generate an approximation. We say thatithegeneration of a Sierpinski triangle is one
which has a depth af. The Oth generation Sierpinski triangle is a simple triangFigure5
shows the 4th generation Sierpinski triangle.
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Figure 5: A 4th generation Sierpinski triangle
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5.1 Generating Sierpinski triangleswith GP

The GP progransi er pi nski is presented in Figuré. It expects as input a graph consisting
of a single node labelled with the generation number of tleepBiski triangle to be produced.
The rule schemani t creates the initial Sierpinski triangle (generation 0) &ms the input
node into a unique “control node” whose label is of the farmg. The underscore operator is
used here to hold the required generation numband the current generation numbem a
single node.

After i ni t has been applied, the nested Iqopnc; expand!)! is executed. In each
iteration of the outer loop, the rule scheinac increases the current generation number if it is
smaller than the required number. The latter is checkeddygdhditionwher e x > y. If the test
is successful, the inner loggxpand! performs a Sierpinski step on each triangle whose’root
is labelled with the current generation number: the triangteplaced by four triangles such that
the roots of the three outer triangles are labelled with theé higher generation number. The test
x > y fails when the required generation number has been reathehis case the application
of i nc fails and, as a consequence, the outer loop terminates amdge¢he current graph. It
is not difficult to see that the resulting graph is indeed tiergnski triangle of the required
generation.

5.2 Comparison with other systems

In Figure7 we present the execution times for the GP system and somegrtgh transforma-
tion systems that participated in the Sierpinski tool cent&he times for GP were obtained on a
PC with an Intel Pentium 4 processor with a clock rate of 2.8@kd 512MB of main memory.
The times for the other systems were obtained on comparah@himes. Our figure includes
only a subset of the tools described IFBB*08]. We have omitted tools that are tailored for
parallel rule applications in specialised areas but cabhaatonsidered as general-purpose graph
transformation tools.

As Figure7 demonstrates, GP is faster than five other systems and isrbeaty by Gr-
Gen.NET and Fujaba. GrGen.NET requires the programmereaifgpypes of node and edges
(often hierarchical types with multiple inheritance). Tihéormation gained from these types
gives more information to the graph matching algorithm also allows better compilations.
GP has very little typing, freeing the programmer from sfy@ug these overarching types. This
allows shorter, more succinct programs at the cost of somedsgHowever, as demonstrated by
this benchmark, the speed lost is not too great.

5.3 Non-deterministic programs

Other graph programming systems do not fully exploit the-deterministic nature of graph
transformation rules. The semantics of GP programs on igmths areall possible output

graphs, and this is taken seriously by the implementatidhanit provides users with the option
to generate several or even all possible results. This nésthais complete for terminating

7 Theroot of a triangle is the unique node (if it exists) from which adlje and a 1-edge is outgoing. Note that the
inner triangle on the right-hand side @kpand does not have a root, hence it will never be expanded.
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main = init;(inc;expand!)!.

init(x:int)

inc(x,y:int)

@ ;
1 1
where x >y

expand(x,y, u,Vv:int)

Figure 6: The Prograrai er pi nski

programs. In contrast, AGEGERT99 makes its nondeterministic choices randomly, with no
backtracking. Similarly, Fujaba has no backtracking. #mse that PROGRESSWZ99 is the
only other graph transformation language in use that pesvizhcktracking.

The Sierpinski example presented above is a deterministiolgm. That is, the program
si er pi nski computes a function where each input graph produces a singfait graph.
Although in the GP implementation there is a choice of whictieo to convert subtriangles
to the next generation, since they will all get done evehudlis is a confluentprogram in
that all output graphs are isomorphic. This is not alwayschee. For example, the program
nm ni mrumspanni ng_t r ee presented in the Introduction is non-confluent: for an irgraph,
there is not necessarily a unigue minimum spanning tree. iMp&ementation of GP respects
the semantics, and allows computation of all possible mimmspanning trees. The use of
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Figure 7: Execution times for the Sierpinski benchmark

this non-determinism is not limited to finding multiple arew. It is possible, and common, to
write programs which rely on the backtracking behaviour terfiresults, or make correct non-
deterministic guesses. Most other graph transformatistesys do not allow such programs.
Neither AGG nor Fujaba allow backtracking over graph rul&ése GrGen.NET API supplies

tools necessary to perform backtracking (such as presgalipossible matches of a rule), but
the GrShell example environmeri@G07] does not allow backtracking in this manner.

Using nondeterminism to this extent is sometimes problemhit the Sierpinski example, the
order in which the matches of tiexpand rule are applied makes no difference, yet if later in the
program there was a failure, the backtracking mechanismdnaopall possible different orders
of the matches. It is an item of future work to develop analyschniques to detect and disable
the backtracking in such cases (see also the remarks in xthsewtion). Since no backtracking
is required in the Sierpinski example, our solution had thektracking mechanism of the YAM
disabled.

6 Conclusion and Future Work

The GP implementation matches faithfully GP’s semantiabalows to compute all results of
a (terminating) program. GP is a small clean language, withugh structure so that it is us-
able, but little enough that the semantics is understaedaid useable for arguments and proofs
[PS0§. The system is reasonably fast; slow execution is usuallsed by a vast nondetermin-
istic search space which can often be avoided by programaoairefully.

The YAM can give more than one answer, or all answers. It pewia clearly defined sep-
aration between runtime and compile time actions. WhilstYAM has been designed as part
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of the GP system, it is by no means restricted to it; otherlysystems and semantics could be
realised using the bytecode provided by the YAM.

In the current implementation of GP, only one match of one rsllexecuted at a time. Other
graph programming systems can execute multiple rules otipteuimatches in parallel, which
can give large speed gains in certain situations. The GBraydbes not currently do this because
it involves a considerable amount of checking that all théchies can be successfully executed
without interfering with each other, and would make the Baaping for backtracking very
complex.

The GP system generates static searchplans at compilesome host-graph interrogation
is possible. With runtime searchplan generation (as in GISET [GBG'06)), it is possible to
always match the rarest elements first, which reduces thmelsspace to find a match.

As GP programs get larger, it may be useful to include optiooaservative static type check-
ing. This may be implemented as graph metamodels or morelegrtyping systems such as
the GRS types offPR04. By analysing programs, it will sometimes be possible targntee
that certain graph structures do or do not occur.

In many cases, nondeterministic (sub)programs are confltiey cannot possibly fail, and all
solutions are isomorphic. Using static analysis techrégueh as critical-pair analysiBIu09,
it will sometimes be possible to detect these situationsis Thuseful information in itself,
but can also be used to speed up the implementation, sink&dedng would not be required
through a confluent section of a program.
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