Electronic Communications of the EASST

Volume 10 (2008)

Proceedings of the
Seventh International Workshop on
Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

Type Checking C++ Template Instantiation by Graph Programs
Karl Azab and Karl-Heinz Pennemann

14 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Type Checking C++ Template Instantiation by Graph Programs

Karl Azab and Karl-Heinz Pennemann

azab@informatik.uni-oldenburg.deennemann@informatik.uni-oldenburg.de
Carl v. Ossietzky Universitat Oldenburg, Germany

Abstract: Templates are a language feature of C++ and can be used faproet
gramming. The metaprogram is executed by the compiler atglitsusource code
which is then compiled. Templates are widely used in so#wdararies but few
tools exist for programmers developing template code. itiquaar, error messages
are often cryptic. During template instantiation, a compiboks up names that
depend on a template’s formal parameters. We use graphpresent the rele-
vant parts of the source code and a graph program for the naskagd and type
checking for expressions involving such names. This teglenprovides compiler
writers with a visual way of writing algorithms that generatrror messages and
forms the basis for a visual inspection of type problems amggjested remedies for
the programmer. Our graph program terminates and emiteatarror messages.

Keywords: Graph programs, Type checking, C++

1 Introduction

Templates are a feature of the C++ programming languageefoerge programming, i.e. pro-
grammed code generation. Generic source code is writtermiiitimg the specific data types
of variables and instead supplying those as paramegerarfieterized typgsA parameterized
type and variable of that type can be used as any other typariable, e.g. the type name can be
used to resolve names and the variable’s members can besadca@$is way, templates separate
types from algorithms in design, and combines them into nessetypes and functions at com-
pile time. Compared to non-template code which uses a getype likevoi d *, animmediate
advantage from templates is improved static type checKiagplates are used extensively in the
Standard Template Library and Boost librariés§99 AG04]. They have also found use in per-
formance critical domains, such as scientific computing @ntéedded system¥¢198, Str04.
An introduction to templates can be found in e §trpd.

A class type or function containing generic source codellsdatemplate definitionA list
of type parameters for a particular template definition iedaa declaration For each unique
declaration, thgéemplate instantiatiormechanism generates a specialization of that template
definition. Aspecializations a copy of the definition where the parameterized typessiaced
by the declaration’s actual type parameters. Non-typescaonstants, are allowed as template
parameters, allowing e.g. array sizes to be set at compike fTemplates form a computationally
completemetalanguagg¢CEOQ(Q, a sub-language of C++ executed during compilation.

Consider the following example: A parameterized type igluseresolve the namei ze in
the template definition in Figure The first specialization is for the declaratibpnon<char >
and will not compile since the provided typéar has no field namedi ze and can therefore

1/14 Volume 10 (2008)

mailto:azab@informatik.uni-oldenburg.de
mailto:pennemann@informatik.uni-oldenburg.de

Type Checking C++ Template Instantiation by Graph Programs Ea

not be used for the expression defining the array size. Fadbend specialization, if the type
resol uti on<128> contains a static field named ze of an unsigned integer type, then the
second specialization will compile.

,1' Metaprogram! - _ _ _ _ _ _ _ _ _ _ _ _ _ , 4/ Compiler\‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,, / [
Template definition|
template<typename RESOLUTION> ,—| Specializatior ;

struct icon {
pixel m.icon
[RESOLUTION: : size]
[RESOLUTION:: size];
/ s/

} I

struct icon<char> {
pixel m_icon[char:: size][char::size];

I

I

I

I

|

I

|

I

I ... %/ :
H i
|

struct icon<resolution<128>> { |
pixel m.icon !
[resolution<128>::size] !

I

|

I

|

I

I

|

I

|

[resolution<128>::size];
[E Y

ofyenue)sul arejdwa]

icon<char> wrong. declaration

icon<resolution<128>>
correctdeclaration;

Figure 1. C++ template instantiation.

Even though templates are a useful technique, they can bplenm@and difficult to read and
write. In particular, error messages are often crypticsHais led to the development of methods
and tools to analyze template code. The usage of speciafizatan be analyzed by debuggers,
software patterns like tracerg J0Z], and tools like TUAnalyzerGPGO04. For the metaprogram
itself, research is being done on a debugging framework TightgPMS04.

To improve error messages, we suggest modeling definitiodsdaclarations by graphs,
while name lookup and type checking of such graphs is madedphgprograms that emit error
messages as graphs instead of text. Graphs allow an aletichatisual representation of all
necessary information, while graph programs provide aritimé¢ way of writing programs that
detect problems and suggests remedies. In combinationprétbentation techniques such as
focusing (on relevant parts) and hierarchical depictioa,bglieve that our model is usable as a
basis for a visual inspection of type problems and suggesteedies.

Graph transformation systems is a well investigated aré@eioretical computer science. An
overview on the theory and applications is given in the bBokdamentals of Algebraic Graph
Transformation EEPT0§. Graph transformation systems rewrite graphs with (graphsfor-
mation) rules. A rule describes a left- and right-hand sidetransformation step is done by
matching the left-hand side to a subgraph of the considetaghgand modifying that subgraph
according to the difference of the left- and right-hand si@eaph programs{P01, PS04 pro-
vide a computationally complete programming languagedasegyraph transformations. Graph
conditions HP0OJ can be used to express properties of graphs by demandiraytdding the
existence of specific structures. In a similar way, graptdimns can limit the applicability of
rules in a graph program, by making demands on elementstothé subgraph matched by a
rule.

In this paper, we use graphs to represent the template soodeenecessary for name lookup
and type checking during template instantiation. We reféhtse graphs as source-code graphs.

Proc. GT-VMT 2008 2/14

@ ECEASST

A graph programl' TC (Template-Type ChecKelooks up dependent names and detects type
clashes in expressions for a subset of the C++ templaterésatliTC attempts to solve type
clashes by implicit type casts. If such a cast loses pretisiavarning message is generated. If
no appropriate cast is found, an error message is genematkchting the location of the error
and suggesting a remedy for the programniérC outputs a message graph, where errors and
warnings are embedded. The message graph is interpretdte pragrammer with the help
of graph conditions. Graph conditions detect warning amdrenessages in graphs and when
an error is present, they can determine for which declarateo definition can successfully be
instantiated. Figur@ gives an overview.

interpretation with message graph

L "7 graph conditions

,,,,,,, Yoo

source-code-graph graph program
' transformer | source-code graph TTC

Figure 2: TTCtype checks graphs and outputs error messages.

The paper is structured as follows. Graph programs areduted in Sectior?. Section3
informally describes how C++ source code is transformea saurce-code graphs and defines
type safety for graphs. In Sectidrwe present the graph prograri Cfor transforming a source-
code graph into a message graph. In Secliave give proof ideas for how to show th&T C
terminates and that the error messages generated by itttpiralicate that the input is not type
safe. We conclude our results in Secti@nA long version of this paper, with complete proofs
and more examples, is available as a technical report/se@1.

2 Graph Programs

In this section, we review conditions, rules, and programt)e sense of{P0 and [HPO1]. In
the following, we consider the category of directed labejemphs with all injective graph mor-
phisms. Labels distinguish different types of nodes an@e@qd directions model relationships
between nodes. We use the standard definition of labeledhg@pd labeled graph morphisms,
see EEPTO0§ or [APO7] for details. For expressing properties on graphs we uszbed graph
conditions. The definition is based on graph morphisms.

Definition 1 (Graph conditions) Ayraph conditionover an objecP is of the form3aor 3(a, c),
wherea: P — C is a morphism and is a condition oveC. Moreover, Boolean formulas over
conditions (overP) are conditions (oveP). A morphismp: P — G satisfiesa conditionda
(3(a,c)) over P if there exists an injective morphisor C — G with go a = p (satisfyingc).
An objectG satisfiesa conditionda (3(a,c)) if all injective morphismsp: P — G satisfy the

3/14 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs Ea

condition. The satisfaction of conditions overby objects or morphisms with domam is
extended to Boolean formulas over conditions in the usual wile write p|=c (G = ¢) to
denote that morphisnp (object G) satisfiesc. In the context of rules, conditions are called
application conditions

We rewrite graphs with rules in the double-pushout appr¢a&PT0§. Application conditions
specify the applicability of a rule by restricting the mat@hmorphism.

Definition 2 (Rules) Aplain rule p=<L «— K — R consists of two injective morphisms with
a common domaiiK. L is the rule’s left-hand side, aridlits right-hand side. Aeft application
conditionac for p is a condition ovet. A rule p =< p,ac> consists of a plain rule and an
application condition ac fop.

L ——
ml @

G——

—_

2 m*

O«— X
II+— 230

R —

Given a plain rulep and injective morphisnk — D, adirect derivationconsists of two pushouts
(1) and (2) where thenatch mandcomatch m are required to be injective. We write a direct
derivationG =pmm- H. Given a graplG together with an injective matah: L — G, the direct
derivationG =pmm H can informally be described as$i is obtained by deleting the image
m(L — K) from G and addindR — K. Given a rulep= < p,ac> and a morphisnK — D, there is
adirect derivation G=gmm H, if G=pmm H, andm = ac.

We now define graph programs as introducedHR(1].

Definition 3 (Graph programs) Every rulp is a (graph) program Every finite set¥ of
programs is a program. B andQ are programs, the(P; Q), P* andP| are programs. Thse-
manticsof a progranP is a binary relatiorfP] C ¥, x %, on graphs: (1) For every rulg [p] =
{{G,H>| G =, H}. (2) For afinite set” of programs .| = Upc »[P]. (3) For program#$
andQ, [(P;Q)] = [Q] o [P]. [P*] = [P]* and[P|] = {{G,H > € [P[* | =3M. {H,M > € [P]}.

Programs according to (1) asdementaryand a program according to (2) describesrbade-
terministic choiceof a program. The progrartP; Q) is thesequential compositioaf P andQ.

P* is thereflexive, transitive closuref P, andP| theiteration of P as long as possible. Programs

of the form(P; (Q; R)) and((P; Q); R) have the same semantics and are considered as equal; by
convention, both can be written BsQ; R. We useP|* as a shortening d®; P|.

Notation. When the label of an element is eitreeor b we use the notatioalb. <L =R> is
used a short form of L «+— K — R>, whereK consists of the elements commonLtandR. For
an application condition with morphis@a: P — C, we omitP as it can be inferred from the
nodes with the same label, we sometimes add an identifiereiiottm of “label:id”. We use
source-code fragments as identifiers and therefore pemt ih a fixed-width font.

Proc. GT-VMT 2008 4/14

@ ECEASST

3 From Source Code to Source-Code Graphs

In this section, we introduce source-code graphs, the ifguuiur type-checking program, and
informally describe how source code is transformed intchsgi@aphs. A source-code graph
is a graph representation of template definitions, dedtarst and expression’s specializations.
The type signature of every declared method, function, goeafator in a template definition is
represented in the graph by an overload forest, see belguweEsions that involve parameterized
types are represented in the graph by expression pathsjreglshortly. For every declaration,
the above mentioned graph representations are copied amdtameterized types are replaced
by the actual types provided by the declaration.

The basic elements of our source-code graphs are nodesiplatie definitions, declarations,
data types, names, type signatures, and expression treegjuiek reference, node and edge
labels together with a short explanation are listed belooteNhat a visualization of an edge as
dashed or solid denotes a difference in labels.

Nodes Edges
D declaration p actual parameter comparison
E error message t data type c castwithout precision loss
ex (sub)expression T template definitionl d deduced type of expressian
ol overloaded operatof W warning message | p parameter
op operator name pc cast with precision loss
r returntype
R recovered comparison

Template definitions are represented by T-nodes. Two dgias are equivalent if they are
based on the same template and have equal lists of templaiagi@rs. Each class of equivalent
declarations are represented by a D-node and denotes a fgecialization. Each D-node has
an incoming edge from the T-node representing the tempédtrition the declaration means to
instantiate. Possible template parameters are represbyptenodes. Such parameters include
classes, structures, fundamental types, and constantstatop, function- and method names
are represented by op-nodes. kP07 we show a graph program that generates source-code
graphs.

Examplel Consider the source code with two class-type templates,lliand 18, in Figuré.

The principal data type is tHecon structure with a template parameter for its resolution type
Ther esol ut i on structure has a constant template parameter for a (quedragolution. For

the two unique declarations imai n, name lookup and type checking is needed for the expres-
sions on lines 3, 20, 23, 24, 25, 40, and 41. In Sedciiove will show how the graph program
TTCreports the type clash in the expression on line 41. NoteRigatre4 shows the source-code
graph of the source code example from FigBivehere the above mentioned lines are represented
as expression paths. That source-code graph also showsdtieanl trees for the operators on
line 3 and 22. For completeness, some overload paths repiresased operations native to C++
are also included, e.g. comparisat) of integers.

We will now introduce some necessary graph-theoretic netion particular, we introduce and
use expression paths and overload trees to define type $afejyaphs. Expression paths rep-

5/14 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs Eg

el .
— —
> —
< p—
= -l
[c
. > o
— o - O
CRP NP
‘- — zw—/+E
~N %) 5 + .
(0] ~ - i |:+_4¢5
E N zZ :)+":
® T O g o
N o = Ol.- N>
O~ D 0 o= o
S \\5_0) 6‘ Wl N| »
I —— ;) Q;m.."'
T > 1l &l —
(] - qJ‘«s>-~ o OZQ._l
N .- bl vl — fa—
AN — (] — L=l @ = gol—'_‘ é
) % = g: N "’|:3'—| g
N a 8 830 N Y Sog Y
%] = — > é —l(/)C ¥¥
| o© S50o o =z o
5 g 5 >t° Q : S@He °o°
g @ o o o<+ B Z oW i == o)
o [2 =y E] o
(@) V == |
- O o — & oo 1 2 o i g
-) oy pu et (@) = o\~ o o .=
e < x| T o= o > oV 0 0 ol 2
c el | .- oo o
< o - Q"V.Q | = r— it ‘5J>O
-~ 8‘ 2 =, @ 8 g_ho,_(o|=
- g £ = + .- n > 1] Ll o= .- (PN} P
S =
29 = ‘5:”$m3 % .D_:. 9”._‘:! Z) H:JH{J @@@ m$
per P 8 23559 Yon E 7 xloe o=
D 5 ~c T O > < S D S < w —| T
= 35 Ty © Q| = —| D I Raade) _,._\Ho - = LlJLLJ_: o
2o © o o=l 242 O_.£8 * €2 ~ood 33
S o= xlo 2o 'H=E 253 oz - s BT 389 &
T oo ® 2o o—35/5 35S vV ol E e E = 5(!) ~ =
o= s _Yq2as o=l Q;vo = oo = @ [T c
— 7 o XCU ol = — PE— ~~ — © + + o
T + = Q= [3} © +~ QO c| o |3} c c c c S
=5 c OV x o= == = o X |+ -~ == Elgolo o9 =
Q:O 5 € -— Q:S'_ o Y= N ol Ol O — - I
eC o > -~ €9 I -~ Lo == -
o= - = - g e .- BT ¢
=0 ~ » ~ S0 ~ = -~
A4 ™ O ~ o <o ® 1w ~ o d n ~ o <G ® m ~ o d o
A4 4 d4 +d4 4d4 &N N N N & oM &M oo ;o o < <

Figure 3: Two class-type templates.

resent the type information from an expression tree and adetad by ex- and p-nodes. The
root of the tree becomes an ex-node and has an incoming emlgetie D-node that represents
the specialization in which it will exist. Each ex-node haseglge to the op-node denoting the
operation’s name. We allow for operators with an arbitramnber of operands, so the children
of the root in an expression tree are modeled by a path of psiotl such a child is a subex-
pression, then the corresponding p-node has an edge to axpesssion node. If it is not, then
it denotes a type and its p-node has an edge tgfhaeade denoting that type.

Definition 4 (Expression paths) Given a grafhand a natural numbey ani-expression path
in Gis a pathexp ... p;, where the headx is an ex-node angy, ..., p; are p-nodes such that,
from every nodegy, 0 < k < i, the only edge to another p-node isgdg 1.

Example2 Figure5 shows (to the left) an expression tree denoting line 41 imipita 1 to-
gether with its correspondir@grexpression path (to the right).

We represent the type signatures of methods with overlogest®y trees and paths. A method
namednet hod declared in class typel ass with n parameters is represented by a path of
n+ 2 ol-nodes. The head of that path has an edge to the op-naogseeting the nameet hod

Proc. GT-VMT 2008 6/14

ECEASST

const 32f¢--------------------

h
|
|
1
|
1
v
N A
Y N
~ N
o
- vV i
v j
c c
S o 1 <
— H ¥ -
5 > v
= S . @
<] a =% c
2 4) 5]
Pl 3 [3)
5 v ' = =
i c ! o
5] I3 i ¥
o © I
= 1
5 [l |
|
|
1
L] |
i
|
[S A SO SR ”
|
= |
£ A
@ A |
£ o I
= = |
[a) 5 1
5 i
: i
8 2
£ v
—“ c
o H P
] e R .- Akiir- B @
.H i i !
[' ! |
\\\\\\ B e =Y I
: |
! 1

. N
A A 0
Py Al s
@ Sl S
by Vv ©
Ly < N,
ot o N g
- = o

1l = 5

+ S = od

= S)

[=% o » %]

) @ o S
- v 2
A c P
S S 2
[3) © S
o] ©&] =

/ .

Y

Figure 4: A source-code graph split in two for simpler repreation, but note that the two
subgraphs are not disjoint: the nodes with identical ide {e center column) are identified.

7114 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs Eg

+=) ___;::b'lli?i"c—o—nzr esol ut| on<128>>]
@@ @\—\f\@;’@]{w: i con<r esol uti on<32>>|
\F\)\\\“’lt: functions & operators]

Figure 5: Expression paths represent expression trees.

and another edge to thtnode representingl ass. The ol-node at positiok (2 < k < n+1)

in the path has an edge to the node denoting the type of treblat parameter positidn- 1.
The last ol-node in the path has an edge to tBertode denoting the return type pet hod.
Functions are modeled as methods but as declared in a spkdalwith a name not allowed
in the source language, e.uncti ons & oper at or s. Operator overloading is modeled
as functions. In the following operators, methods, andtions are collectively referred to as
operators

Definition 5 (Overload forest) A grapls contains aroverload foresiff all ol-nodes inG are
part of exactly one overload tree and there exist no pair efload trees with equivalent roots,
see below. Aroverload treeis a maximal connected subgraphin G, consisting of only ol-
nodes. T is maximal in the sense that, if an ol-nodeTirhas an edge to an ol-node, then that
node is also ifT. Furthermore T must have a tree structure, i.e. no cycles and every node has
one parent, except for the root. For nodesTithe following holds for them irG: (1) Each
internal (leaf) node has exactly one p-edge (r-edge) {b-@abde, one edge from its parent, and
no other incoming edges. (2) The rootDfhas an additional edge to an op-node. (3) No two
siblings have a p-edge to the sanfie-hode. (4) Every node has at most one child that is a
leaf. Requirements 3 and 4 are necessary to prevent amisigyjoel signatures. Two roots are
equivalentiff there exists an op-node and tD-nodet, such that both roots have edgestand

t. Ani-overload path @...0;;1 is a path inT from the root to a leaf. Theéd-node to which an
r-edge exist frono;, 1 is called thereturn typeof thei-overload path.

Example3 The overload tree in Figuré has two2-overload paths, representing the type sig-
natures of two overloaded operators. The tree represantptirator template on line 22 and the
two paths are generated for the two declarations on line dGlarnin Figures.

[t: functions & oper a?éré] P

O
[D: i con<resol uti on4<’:-,;2‘>>|¢_f3 ____________ Ff_’jD: i Con<r esol Ut | on<128>>
Sl o5
\r\‘\\\ /,,/”‘r
\ ,

Figure 6: Two overload paths.

Proc. GT-VMT 2008 8/14

@ ECEASST

Remark 1.The size of a source-code graph grows linearly with the sizeeosource code that
would be output by the template instantiation mechanism@¥& compiler. An expression or
declared operator that exists in such source code is repiegsenly by a single expression path
or overload path, respectively.

The main property in this paper is the one of type safety. Algia type safe if for every expres-
sion path, there exists an overload path with the same tgoatire. This property corresponds
to type safety for template instantiation in C++ program$gere every generated expression
must be type checked against the existing and generatedtopser

Definition 6 (Type-safe graphs) A grap@ is type safdff it contains an overload forest and is
i-type safe for all natural numbersG is i-type saféff every i-expression path i is type safe.
An i-overload pathog. .. 01 makes the-expression pathx ... p; type safeff:

1. There exists an op-nodg and two edges: one froexto op, the other fronog to op.

2. For allk, where 0< k < i, there exists gD-nodet and two edges, one frooy tot and the
other is fromp to either t or the head of a type safeexpression path such thiais the
deduced type of the thatexpression path.

Thededuced typef thei-expression path is thél-node with an incoming r-edge froo, 1.

It is easy to see that no overload path from Figbiraakes the expression path in Figlréype
safe.

4 The Type-Checking Program

This section describes the graph progr&@hC which performs the name lookup and type checks
source-code graphs. The section also shows how messades grap interpreted with graph
conditions.

A schematic of how the subprograms BT C interact is shown in Figur@. Intuitively,
TTC works as follows: The input is a source-code graph, eachesgn path is marked by
Mar KExpr essi on, andConpar e moves this marker through the path until it reaches the tail
or a type clash. At a type clasRecover either solves it or generates an error message. For
markers at a tailResol ve finds the deduced type of the expression path (i.e. it resdive
type of a subexpression). This chain is then iterated as dsngew work is made available by
Recover andResol ve for Conpar e. The yield of TTCis a message graph. Programs and
rules are described in more detail below.

Definition 7 (TTC) Let the graph prograliTC = WMar kExpr essi on|;TypeCheck]
with the subprograms:

TypeCheck = Conpare|";Recover |;AfterRecover |;Resol ve|

Conpar e = { Lookup,Conpar eNext ,Fi ndType }

Recover = {Cast ,Warni ng,Error}

Resol ve _ { Resol v_eSubexpr essi on, _ }
Resol veExpr essi onl,Resol veExpr essi on2

9/14 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs Eg

. source-code grap1h
Mar KExpr essi on|

message graph

Figure 7: Structure of TC.

Mar KExpr essi on| is executed before the actual type checking starts and sadah ex-
node with an=-edge to show where the evaluation starts. To avoid duplieatluation, a loop
is also placed at the ex-node and checked for in the apglicatndition.

Mar kExpr essi on: <<*“\ = >, -3 (*“\)>

Conpare|™ consists of the rulesookup, Conpar eNext , andFi ndType, see Figures.
They move the=-edge generated byar kExpr essi on through the expression path as long
as a matching overload path can be found. The program ha#s witompletes this matching
or encounters a problem: that no overload path makes thiegsipn path type safe or that this
node in the path depends on the deduced type of a subexpredsie ruleLookup finds the
overload tree for a marked expression’s narflenpar eNext matches the type signature of
the expression path to an overload path parameter by pagariée rulei ndType is applied

at the tail of the expression path and deduces the expréssyqme via the matched overload
path’s return type. The rule’s application condition magere that this is actually the tail of the
expression path.

Lookup: < @p:tD = - _ >
olfP ﬂ
Conpar eNext : E p = @”” E-
ol —{alP o—folp
<F o & Bl >
Fi ndType: - -
B Can
—

Figure 8: Rules in the progra@onpar e.

Proc. GT-VMT 2008 10/ 14

@ ECEASST

Recover | consists of the rules FiguBeand tries to find alternative overload paths by implicit
type casts. The rul€ast finds a type cast that causes no loss of precisiém.ni ng works as
Cast but uses a cast with a possible loss of precision. For thisemermte a warning, a W-node
with three outgoing edges: the location of the problem, tiigiral type, and the cast type. The
application condition make sure th@ast is preferred. The rul&r r or is applied when there
is no solution by implicit type casts. An error node is therefgenerated. It has three outgoing
edges, to the p-node where it occurred, the faulting type aasuggested type. The application
condition limitsEr r or from being applied wher€ast or War ni ng could be applied instead.

Cast :
plex @—b— plex] ER t|D
= c = R p c
[ollop}—{ol} - - .,,,,
V\ar ni ng:
p}-5-+[fD
pc =
alep of} - 5-+filD o]
Error:
B0 P ok
suggestion |,
lwl olop—{o1} {0
=3

-5} i
tp | A3 c|pc
- l,,, t

Figure 9: Rules for the prograRecover.

Af t er Recover | performs some cleanup work fBecover |, generated R-edges are reset
to =-edges.

Af t er Recover : <7Ii* = ,,:,*>

Resol ve| consists of three rules, as shown in Figlfe Resol veSubexpr essi on re-
places a subexpression with its deduced return tigesol veExpr essi onl marks an expres-
sion as evaluated with a dashed ed§esol veExpr essi on2 does the same in the special
case when the return type is the same as the specializatiohdre the expression occurs.

Exampled The graph in Figuré1is the yield ofTTC applied to the overload tree from Figue
and the expression path from FigureSee APO7] for more examples.

11/14 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs Eg

@>

Resol veSubexpr essi on: sd = Py
t|D t|D

5—p.od

Resol veExpr essionl: ,
t|D t|D

Resol veExpr essi on2: <@(é? = @,”»>

Figure 10: Rules ilResol ve.

---------------- +[D:i con<resol ution<32>>J«--------oo--o-td

Figure 11: Portion of a message graph.

Remark 2. After the termination ofTTC, graph conditions can help to interpret the message
graph. A graph is arrror (warning) graph iff it satisfies the conditiod(0 —) 30—

)). A particular declaration can safely be instantiatedsfabrresponding D-node satisfies

the conditionﬁﬂ(@ — @—»). If that condition is not satisfied, then one of its expressio
could not be resolved and the programmer must take appte@tdions. A message graph will
contain all the detected errors for the corresponding socwde. Graph conditions can therefore
help programmers to locate the areas of the graph that cositigh errors. An implementation
of this approach should be able to highlight the areas auntithe errors.

Remark 3The size of the resulting message graph will not grow more linearly with the size
of the corresponding source-code graph. This is so sinag exgression tree can at most be
marked by one error message. For size of source-code gsgghRemark

5 Correctness and Termination

We now define correctness with respect to errors and terioimédir graph programs. We give
the ideas for proving thai TC terminates and is correct w.r.t. errors.

Definition 8 (Correctness and Completeness) A graph progPars correct with respect to
errors if for every pair{ G,H > € [P], H is an error graph implie& is not a type-safe source-
code graph. If the converse of the implication holds, we bayR is complete w.r.t. errors

Proc. GT-VMT 2008 12/14

@ ECEASST

Theorem 1(Correctness) The graph progranTTCis correct with respect to errors.

Proof idea. Errors are only generated iRecover and consumes as-edge that should have
been consumed b@onpar e| ", given thatTTC were initially dealing with a type-safe source-
code graph. A complete proof is given iAp07].

Fact 1. The graph progranTTC is not complete with respect to errors. ERBecover uses
implicit type casts, and thereby avoids generating errarséme non-type-safe graphs. It has
not yet been investigated whether or not other counterelemgxist.

Definition 9 (Termination) Terminationof a graph program is defined inductively on the struc-
ture of programs: (1) Every rulpis terminating. (2) For a finite se¥’ of terminating programs,
& is a terminating program. (3) For terminating prografsind Q, (P;Q) is terminating.
Moreover,P* andP| is terminating if for every grapf®, there is no infinite chain of derivations
G =p G; =p ... where=p denotes the binary relatidi’] on graphs.

Theorem 2(Termination) The graph progranTTCis terminating.

Proof idea.Conpar e is applied at least once for every iterationTgfpeCheck and consumes
solid edges that are not generated by the other subprogfaomnplete proof is given inr4P07].

6 Conclusions

We considered the template instantiation mechanism in Gwtstiowed how to write visual
rules for type checking and error message generation. \Wemailly described how source code
was transformed into source-code graphs and defined typty daf graphs. We transformed
source-code graphs into message graphs, a transformaten lgy the graph programTC
which type checked source-code graphs. The program autaihaicorrected some errors by
implicit type casts. It emitted error messages for typehdasthat it could not correct. Proof
ideas were given for termination and correctness w.r.argrr

Further topics include:

1. Analysis of source-code graphs by generalized graphittomsl Graph properties like
“There exists a warning or error node” can be expressed tphgranditions in the sense
of [HPO3. It would be interesting to generalize graph conditiongrsme complex graph
properties like “The graph is type safe” becomes expressibl

2. Debugging and a transformation from message graphs toesoade. The error messages
generated by TC contained suggestions for remedies. In the double-pusipjubach to
graph transformation, a central property is the existeri@nanverse rule, that when ap-
plied reverses the rewrite step of the rdi=[PT0§. In this way, the inverse rule allows for
back tracking to a previous graph which can be manipulatesperiment with suggested
remedies. The changes are logged in the output graph (ne#skagge graph) and used
by a source-code transformer to update the source code.

13/14 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs Eg

3. Implementation of the approach. This would include a fdination of the transformation
from source code to source-code graphs and an extensioa sétlof considered template
features.

Acknowledgements: This work is supported by the German Research FoundatioG}DR-
der grant no. HA 2936/2 (Development of Correct Graph Tramsétion Systems). We thank
Annegret Habel for constructive suggestions that impraledoaper.

Bibliography

[AG04] D. Abrahams, A. GurtovoyC++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyowrdidison-Wesley Professional, 2004.

[APO7] K. Azab, K.-H. Pennemann. Type Checking C++ Templatstantiation (long
version). Technical report 04/07, University of Oldenhu2007. Available at
http://formale-sprachen.informatik.uni-oldenburdg%@&Eskript/fs-pub/templatdeng.pdf

[CEQO] K. Czarnecki, U. W. Eiseneckd&generative Programming: Methods, Tools, and Applica-
tions Addison-Wesley, 2000.

[EEPTO6] H. Ehrig, K. Ehrig, U. Prange, G. TaentZeundamentals of Algebraic Graph Transforma-
tion. EATCS Monographs of Theoretical Computer Science. Serirz06.

[GPGO04] T. Gschwind, M. Pinzger, H. Gall. TUAnalyzer—Anzilyg Templates in C++ Code. Proc.
of WCRE'04 Pp. 48-57. IEEE Computer Society, 2004.

[HPO1] A. Habel, D. Plump. Computational Completeness afgPamming Languages Based on
Graph Transformation. LNCS 2030, pp. 230-245. Springe¥120

[HPO5] A. Habel, K.-H. Pennemann. Nested Constraints angliégtion Conditions for High-Level
Structures. LNCS 3393, pp. 293—-308. Springer, 2005.

[Jos99] N. M. JosuttisThe C++ Standard Library: a tutorial and referencAddison-Wesley, 1999.

[PMS06] Z. Porkolab, J. MihaliczaA. Sipos. Debugging C++ template metaprogramsPtac. of
GPCE’'06 Pp. 255-264. ACM, 2006.

[PS04] D. Plump, S. Steinert. Towards Graph Programs fopkAdgorithms. LNCS 3256, pp. 128—
143. Springer, 2004.

[Str00] B. StroustrupThe C++ Programming Languag@ddison-Wesley, 3rd edition, 2000.

[Str04] B. Stroustrup. Abstraction and the C++ Machine Mod®&ICS 3605, pp. 1-13. Springer,
2004.

[Velog] T. L. Veldhuizen. Arrays in Blitz++. LNCS, pp. 22330. Springer, 1998.

[VJo2] D. Vandevoorde, N. M. Josutti€++ Templates: The Complete Guidaddison-Wesley,

2002.

Proc. GT-VMT 2008 14714

http://formale-sprachen.informatik.uni-oldenburg.de/%7Eskript/fs-pub/templates_long.pdf

	Introduction
	Graph Programs
	From Source Code to Source-Code Graphs
	The Type-Checking Program
	Correctness and Termination
	Conclusions

