
Electronic Communications of the EASST
Volume 10 (2008)

Proceedings of the
Seventh International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

Type Checking C++ Template Instantiation by Graph Programs

Karl Azab and Karl-Heinz Pennemann

14 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Type Checking C++ Template Instantiation by Graph Programs

Karl Azab and Karl-Heinz Pennemann

azab@informatik.uni-oldenburg.de, pennemann@informatik.uni-oldenburg.de
Carl v. Ossietzky Universität Oldenburg, Germany

Abstract: Templates are a language feature of C++ and can be used for metapro-
gramming. The metaprogram is executed by the compiler and outputs source code
which is then compiled. Templates are widely used in software libraries but few
tools exist for programmers developing template code. In particular, error messages
are often cryptic. During template instantiation, a compiler looks up names that
depend on a template’s formal parameters. We use graphs to represent the rele-
vant parts of the source code and a graph program for the name lookup and type
checking for expressions involving such names. This technique provides compiler
writers with a visual way of writing algorithms that generate error messages and
forms the basis for a visual inspection of type problems and suggested remedies for
the programmer. Our graph program terminates and emits correct error messages.

Keywords: Graph programs, Type checking, C++

1 Introduction

Templates are a feature of the C++ programming language for generic programming, i.e. pro-
grammed code generation. Generic source code is written by omitting the specific data types
of variables and instead supplying those as parameters (parameterized types). A parameterized
type and variable of that type can be used as any other type or variable, e.g. the type name can be
used to resolve names and the variable’s members can be accessed. This way, templates separate
types from algorithms in design, and combines them into new class-types and functions at com-
pile time. Compared to non-template code which uses a generic type likevoid *, an immediate
advantage from templates is improved static type checking.Templates are used extensively in the
Standard Template Library and Boost libraries [Jos99, AG04]. They have also found use in per-
formance critical domains, such as scientific computing andembedded systems [Vel98, Str04].
An introduction to templates can be found in e.g. [Str00].

A class type or function containing generic source code is called atemplate definition. A list
of type parameters for a particular template definition is called adeclaration. For each unique
declaration, thetemplate instantiationmechanism generates a specialization of that template
definition. Aspecializationis a copy of the definition where the parameterized types are replaced
by the declaration’s actual type parameters. Non-types, i.e. constants, are allowed as template
parameters, allowing e.g. array sizes to be set at compile time. Templates form a computationally
completemetalanguage[CE00], a sub-language of C++ executed during compilation.

Consider the following example: A parameterized type is used to resolve the namesize in
the template definition in Figure1. The first specialization is for the declarationicon<char>
and will not compile since the provided typechar has no field namedsize and can therefore

1 / 14 Volume 10 (2008)

mailto:azab@informatik.uni-oldenburg.de
mailto:pennemann@informatik.uni-oldenburg.de

Type Checking C++ Template Instantiation by Graph Programs

not be used for the expression defining the array size. For thesecond specialization, if the type
resolution<128> contains a static field namedsize of an unsigned integer type, then the
second specialization will compile.

template<typename RESOLUTION>
s t r u c t i c o n {

p i x e l m icon
[RESOLUTION: : s i z e]
[RESOLUTION: : s i z e] ;

/∗ . . . ∗ /
} ;

Template definition

icon<char> w r o n g d e c l a r a t i o n;

i con<r e s o l u t i o n<128>>

c o r r e c t d e c l a r a t i o n;

Declaration

Metaprogram

s t r u c t i con<char> {
p i x e l m icon [char : : s i z e] [char : : s i z e] ;
/∗ . . . ∗ /

} ;

s t r u c t i con<r e s o l u t i o n<128>> {
p i x e l m icon

[r e s o l u t i o n<128>:: s i z e]
[r e s o l u t i o n<128>:: s i z e] ;

/∗ . . . ∗ /
} ;

Specializations

Tem
p

late
in

stan
tiatio

n

Compiler

Figure 1: C++ template instantiation.

Even though templates are a useful technique, they can be complex and difficult to read and
write. In particular, error messages are often cryptic. This has led to the development of methods
and tools to analyze template code. The usage of specializations can be analyzed by debuggers,
software patterns like tracers [VJ02], and tools like TUAnalyzer [GPG04]. For the metaprogram
itself, research is being done on a debugging framework Templight [PMS06].

To improve error messages, we suggest modeling definitions and declarations by graphs,
while name lookup and type checking of such graphs is made by graph programs that emit error
messages as graphs instead of text. Graphs allow an abstractand visual representation of all
necessary information, while graph programs provide an intuitive way of writing programs that
detect problems and suggests remedies. In combination withpresentation techniques such as
focusing (on relevant parts) and hierarchical depiction, we believe that our model is usable as a
basis for a visual inspection of type problems and suggestedremedies.

Graph transformation systems is a well investigated area intheoretical computer science. An
overview on the theory and applications is given in the bookFundamentals of Algebraic Graph
Transformation[EEPT06]. Graph transformation systems rewrite graphs with (graphtransfor-
mation) rules. A rule describes a left- and right-hand side.A transformation step is done by
matching the left-hand side to a subgraph of the considered graph and modifying that subgraph
according to the difference of the left- and right-hand side. Graph programs [HP01, PS04] pro-
vide a computationally complete programming language based on graph transformations. Graph
conditions [HP05] can be used to express properties of graphs by demanding or forbidding the
existence of specific structures. In a similar way, graph conditions can limit the applicability of
rules in a graph program, by making demands on elements localto the subgraph matched by a
rule.

In this paper, we use graphs to represent the template sourcecode necessary for name lookup
and type checking during template instantiation. We refer to those graphs as source-code graphs.

Proc. GT-VMT 2008 2 / 14

ECEASST

A graph programTTC (Template-Type Checker) looks up dependent names and detects type
clashes in expressions for a subset of the C++ template features. TTC attempts to solve type
clashes by implicit type casts. If such a cast loses precision, a warning message is generated. If
no appropriate cast is found, an error message is generated,indicating the location of the error
and suggesting a remedy for the programmer.TTC outputs a message graph, where errors and
warnings are embedded. The message graph is interpreted by the programmer with the help
of graph conditions. Graph conditions detect warning and error messages in graphs and when
an error is present, they can determine for which declarations a definition can successfully be
instantiated. Figure2 gives an overview.

graph program
TTC

source-code-graph
transformer

programmer

write / update
interpretation with
graph conditions

message graph

source-code graph

source code

Figure 2:TTC type checks graphs and outputs error messages.

The paper is structured as follows. Graph programs are introduced in Section2. Section3
informally describes how C++ source code is transformed into source-code graphs and defines
type safety for graphs. In Section4 we present the graph programTTC for transforming a source-
code graph into a message graph. In Section5 we give proof ideas for how to show thatTTC
terminates and that the error messages generated by it correctly indicate that the input is not type
safe. We conclude our results in Section6. A long version of this paper, with complete proofs
and more examples, is available as a technical report, see [AP07].

2 Graph Programs

In this section, we review conditions, rules, and programs,in the sense of [HP05] and [HP01]. In
the following, we consider the category of directed labeledgraphs with all injective graph mor-
phisms. Labels distinguish different types of nodes and edges and directions model relationships
between nodes. We use the standard definition of labeled graphs and labeled graph morphisms,
see [EEPT06] or [AP07] for details. For expressing properties on graphs we use so-called graph
conditions. The definition is based on graph morphisms.

Definition 1 (Graph conditions) Agraph conditionover an objectP is of the form∃aor∃(a,c),
wherea: P→C is a morphism andc is a condition overC. Moreover, Boolean formulas over
conditions (overP) are conditions (overP). A morphism p: P→ G satisfiesa condition∃a
(∃(a,c)) over P if there exists an injective morphismq: C→ G with q◦ a = p (satisfyingc).
An objectG satisfiesa condition∃a (∃(a,c)) if all injective morphismsp: P→ G satisfy the

3 / 14 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs

condition. The satisfaction of conditions overP by objects or morphisms with domainP is
extended to Boolean formulas over conditions in the usual way. We write p |= c (G |= c) to
denote that morphismp (object G) satisfiesc. In the context of rules, conditions are called
application conditions.

We rewrite graphs with rules in the double-pushout approach[EEPT06]. Application conditions
specify the applicability of a rule by restricting the matching morphism.

Definition 2 (Rules) Aplain rule p= L← K→ R consists of two injective morphisms with
a common domainK. L is the rule’s left-hand side, andR its right-hand side. Aleft application
conditionac for p is a condition overL. A rule p̂ = p,ac consists of a plain rulep and an
application condition ac forp.

L K R

G D H

m m∗(1) (2)

Given a plain rulep and injective morphismK→D, adirect derivationconsists of two pushouts
(1) and (2) where thematch mandcomatch m∗ are required to be injective. We write a direct
derivationG⇒p,m,m∗ H. Given a graphG together with an injective matchm : L→G, the direct
derivationG⇒p,m,m∗ H can informally be described as:H is obtained by deleting the image
m(L−K) from G and addingR−K. Given a rule ˆp = p,ac and a morphismK→ D, there is
adirect derivation G⇒p̂,m,m∗ H, if G⇒p,m,m∗ H, andm |= ac.

We now define graph programs as introduced in [HP01].

Definition 3 (Graph programs) Every rulep is a (graph) program. Every finite setS of
programs is a program. IfP andQ are programs, then(P;Q), P∗ andP↓ are programs. These-
manticsof a programP is a binary relationJPK⊆ GC ×GC on graphs: (1) For every rulep, JpK =
{ G,H |G⇒p H}. (2) For a finite setS of programs,JS K = ∪P∈S JPK. (3) For programsP
andQ, J(P;Q)K = JQK◦ JPK, JP∗K = JPK∗ andJP↓K = { G,H ∈ JPK∗ | ¬∃M. H,M ∈ JPK}.

Programs according to (1) areelementaryand a program according to (2) describes thenonde-
terministic choiceof a program. The program(P;Q) is thesequential compositionof P andQ.
P∗ is thereflexive, transitive closureof P, andP↓ theiterationof P as long as possible. Programs
of the form(P;(Q;R)) and((P;Q);R) have the same semantics and are considered as equal; by
convention, both can be written asP;Q;R. We useP↓+ as a shortening ofP;P↓.

Notation. When the label of an element is eithera or b we use the notationa|b. L⇒ R is
used a short form of L← K→ R , whereK consists of the elements common toL andR. For
an application condition with morphisma: P→ C, we omit P as it can be inferred from the
left-hand side. We omit the application condition if it is satisfied by any match. To distinguish
nodes with the same label, we sometimes add an identifier in the form of “label:id”. We use
source-code fragments as identifiers and therefore print them in a fixed-width font.

Proc. GT-VMT 2008 4 / 14

ECEASST

3 From Source Code to Source-Code Graphs

In this section, we introduce source-code graphs, the inputfor our type-checking program, and
informally describe how source code is transformed into such graphs. A source-code graph
is a graph representation of template definitions, declarations, and expression’s specializations.
The type signature of every declared method, function, and operator in a template definition is
represented in the graph by an overload forest, see below. Expressions that involve parameterized
types are represented in the graph by expression paths, explained shortly. For every declaration,
the above mentioned graph representations are copied and the parameterized types are replaced
by the actual types provided by the declaration.

The basic elements of our source-code graphs are nodes for template definitions, declarations,
data types, names, type signatures, and expression trees. For quick reference, node and edge
labels together with a short explanation are listed below. Note that a visualization of an edge as
dashed or solid denotes a difference in labels.

Nodes Edges
D declaration p actual parameter = comparison
E error message t data type c cast without precision loss
ex (sub)expression T template definition d deduced type of expression
ol overloaded operator W warning message p parameter
op operator name pc cast with precision loss

r return type
R recovered comparison

Template definitions are represented by T-nodes. Two declarations are equivalent if they are
based on the same template and have equal lists of template parameters. Each class of equivalent
declarations are represented by a D-node and denotes a future specialization. Each D-node has
an incoming edge from the T-node representing the template definition the declaration means to
instantiate. Possible template parameters are represented by t-nodes. Such parameters include
classes, structures, fundamental types, and constants. Operator-, function- and method names
are represented by op-nodes. In [AP07] we show a graph program that generates source-code
graphs.

Example1 Consider the source code with two class-type templates, line 1 and 18, in Figure3.
The principal data type is theicon structure with a template parameter for its resolution type.
Theresolution structure has a constant template parameter for a (quadratic) resolution. For
the two unique declarations inmain, name lookup and type checking is needed for the expres-
sions on lines 3, 20, 23, 24, 25, 40, and 41. In Section4 we will show how the graph program
TTC reports the type clash in the expression on line 41. Note thatFigure4 shows the source-code
graph of the source code example from Figure3 where the above mentioned lines are represented
as expression paths. That source-code graph also shows the overload trees for the operators on
line 3 and 22. For completeness, some overload paths representing used operations native to C++
are also included, e.g. comparison (<) of integers.

We will now introduce some necessary graph-theoretic notions. In particular, we introduce and
use expression paths and overload trees to define type safetyfor graphs. Expression paths rep-

5 / 14 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs

1
te

m
p

la
te

<
u

n
s

ig
n

e
d

s
h

o
rt

m
y

s
iz

e>
s

tr
u

c
t

re
s

o
lu

ti
o

n
{

3
c

o
n

s
t

s
ta

ti
c

u
n

s
ig

n
e

d
s

h
o

rt
s

iz
e

=
m

y
s

iz
e

;
}

;
5

s
tr

u
c

t
p

ix
e

l
{

7
u

n
s

ig
n

e
d

c
h

a
r

re
d

,
g

re
e

n,
b

lu
e

;

9
p

ix
e

l
o

p
e

ra
to

r+
(

p
ix

e
l

o
v

e
rl

a
y

)
{

p
ix

e
l

re
s

u
lt

;
1

1
re

s
u

lt
.

re
d

=
(

re
d

+
o

v
e

rl
a

y
.

re
d

)
/

2
;

re
s

u
lt

.
g

re
e

n
=

(
g

re
e

n
+

o
v

e
rl

a
y

.
g

re
e

n)
/

2
;

1
3

re
s

u
lt

.
b

lu
e

=
(

b
lu

e
+

o
v

e
rl

a
y

.
b

lu
e

)
/

2
;

re
tu

rn
re

s
u

lt
;

1
5

}
}

;
1

7
te

m
p

la
te

<
ty

p
e

n
a

m
e

R
E

S
O

LU
T

IO
N>

1
9

s
tr

u
c

t
ic

o
n

{
p

ix
e

l
m

ic
o

n
[R

E
S

O
LU

T
IO

N
::

s
iz

e
][

R
E

S
O

LU
T

IO
N

::
s

iz
e

];
2

1
ic

o
n<

R
E

S
O

LU
T

IO
N>

&
o

p
e

ra
to

r+
=

(
ic

o
n<

R
E

S
O

LU
T

IO
N>

&
o

v
e

rl
a

y
)

{
2

3
fo

r
(

in
t

i
=

0
;

i
<

R
E

S
O

LU
T

IO
N

::
s

iz
e

;
i+

+
)
{

fo
r

(
in

t
j

=
0

;
j

<
R

E
S

O
LU

T
IO

N
::

s
iz

e
;

j+
+

)
{

2
5

m
ic

o
n

[
i

][
j

]
=

m
ic

o
n

[
i

][
j

]
+

o
v

e
rl

a
y

.m
ic

o
n

[
i

][
j

];
}

2
7

} re
tu

rn
∗

th
is

;
2

9
}

}
;

3
1

#
d

e
fi

n
e

LA
R

G
E

R
E

S
re

s
o

lu
ti

o
n<

12
8>

3
3

#
d

e
fi

n
e

S
M

A
LL

R
E

S
re

s
o

lu
ti

o
n<

32
>

3
5

in
t

m
a

in
()

{
ic

o
n<

LA
R

G
E

R
E

S>
p

ic
;

3
7

ic
o

n<
LA

R
G

E
R

E
S>

o
v

e
rl

a
y

;
ic

o
n<

S
M

A
LL

R
E

S>
lo

w
re

s
;

3
9

p
ic

+
=

o
v

e
rl

a
y

;
4

1
p

ic
+

=
lo

w
re

s
;

4
3

re
tu

rn
0

;
}

Figure 3: Two class-type templates.

resent the type information from an expression tree and are modeled by ex- and p-nodes. The
root of the tree becomes an ex-node and has an incoming edge from the D-node that represents
the specialization in which it will exist. Each ex-node has an edge to the op-node denoting the
operation’s name. We allow for operators with an arbitrary number of operands, so the children
of the root in an expression tree are modeled by a path of p-nodes. If such a child is a subex-
pression, then the corresponding p-node has an edge to a new expression node. If it is not, then
it denotes a type and its p-node has an edge to the t|D-node denoting that type.

Definition 4 (Expression paths) Given a graphG and a natural numberi, an i-expression path
in G is a pathex p0 . . . pi, where the head,ex, is an ex-node andp0, . . . , pi are p-nodes such that,
from every nodepk, 0≤ k < i, the only edge to another p-node is topk+1.

Example2 Figure5 shows (to the left) an expression tree denoting line 41 in Example 1 to-
gether with its corresponding2-expression path (to the right).

We represent the type signatures of methods with overload forests, trees and paths. A method
namedmethod declared in class typeclass with n parameters is represented by a path of
n+2 ol-nodes. The head of that path has an edge to the op-node representing the namemethod

Proc. GT-VMT 2008 6 / 14

E
C

E
A

S
S

T

op: <

D: icon<resolution<32>>

D: icon<resolution<128>>

op: +=

op: =

t : functions & operators

t : unsigned short

t : int

t : bool

t : unsigned long long

op: ::size

D: resolution<128>

D: resolution<32>

t : const 128

t : const 32

T: main D: main

ex

pp p

ex

pp p

T: icon<resolution>

ex

pp p

ex

p

ex

pp p

ex

p

ex

pp p

ex

p

ex

pp p

ex

p

T: resolution<size>ex

pp p

ex

pp p

op: <

D: icon<resolution<32>>

D: icon<resolution<128>>

op: +=

op: =

t : functions & operators

t : unsigned short

t : int

t : bool

t : unsigned long long

op: ::size

D: resolution<128>

D: resolution<32>

t : const 128

t : const 32

cpc

c pc

c pc

cpc

c pc

c pc

c
pc

c

c

c

pc

cc

ol

p

ol

p
ol

p

olr

ol

p ol

p

ol

r

ol
p

ol

p

ol

p
ol

r

ol
p

ol

p

ol

p
ol

r

ol
p

ol
r

ol

p
ol

r

F
igure

4:
A

source-code
graph

split
in

tw
o

for
sim

pler
repres

entation,
but

note
that

the
tw

o
subgraphs

are
notdisjoint:

the
nodes

w
ith

identicalids
(se

e
the

center
colum

n)
are

identified.

7
/14

V
olum

e
10

(2008)

Type Checking C++ Template Instantiation by Graph Programs

+=

pic low res

op: +=

D: icon<resolution<128>>

D: icon<resolution<32>>

t : functions & operators

ex

p

p

p

p

p
p

Figure 5: Expression paths represent expression trees.

and another edge to the t|D-node representingclass. The ol-node at positionk (2≤ k≤ n+1)
in the path has an edge to the node denoting the type of the variable at parameter positionk−1.
The last ol-node in the path has an edge to the t|D-node denoting the return type ofmethod.
Functions are modeled as methods but as declared in a specialclass with a name not allowed
in the source language, e.g.functions & operators. Operator overloading is modeled
as functions. In the following operators, methods, and functions are collectively referred to as
operators.

Definition 5 (Overload forest) A graphG contains anoverload forestiff all ol-nodes inG are
part of exactly one overload tree and there exist no pair of overload trees with equivalent roots,
see below. Anoverload treeis a maximal connected subgraphT in G, consisting of only ol-
nodes.T is maximal in the sense that, if an ol-node inT has an edge to an ol-node, then that
node is also inT. Furthermore,T must have a tree structure, i.e. no cycles and every node has
one parent, except for the root. For nodes inT the following holds for them inG: (1) Each
internal (leaf) node has exactly one p-edge (r-edge) to a t|D-node, one edge from its parent, and
no other incoming edges. (2) The root ofT has an additional edge to an op-node. (3) No two
siblings have a p-edge to the same t|D-node. (4) Every node has at most one child that is a
leaf. Requirements 3 and 4 are necessary to prevent ambiguous type signatures. Two roots are
equivalentiff there exists an op-nodeo and t|D-nodet, such that both roots have edges too and
t. An i-overload path o0 . . .oi+1 is a path inT from the root to a leaf. The t|D-node to which an
r-edge exist fromoi+1 is called thereturn typeof the i-overload path.

Example3 The overload tree in Figure6 has two2-overload paths, representing the type sig-
natures of two overloaded operators. The tree represents the operator template on line 22 and the
two paths are generated for the two declarations on line 40 and 41 in Figure3.

op: +=

D: icon<resolution<128>>

t : functions & operators

D: icon<resolution<32>>

ol

p

ol

p

ol
p

ol
r

ol

p

ol
p

ol
r

Figure 6: Two overload paths.

Proc. GT-VMT 2008 8 / 14

ECEASST

Remark 1.The size of a source-code graph grows linearly with the size of the source code that
would be output by the template instantiation mechanism in aC++ compiler. An expression or
declared operator that exists in such source code is represented only by a single expression path
or overload path, respectively.

The main property in this paper is the one of type safety. A graph is type safe if for every expres-
sion path, there exists an overload path with the same type signature. This property corresponds
to type safety for template instantiation in C++ programs, where every generated expression
must be type checked against the existing and generated operators.

Definition 6 (Type-safe graphs) A graphG is type safeiff it contains an overload forest and is
i-type safe for all natural numbersi. G is i-type safeiff every i-expression path inG is type safe.
An i-overload patho0 . . .oi+1 makes thei-expression pathex p0 . . . pi type safeiff:

1. There exists an op-nodeop and two edges: one fromex to op, the other fromo0 to op.

2. For allk, where 0≤ k≤ i, there exists a t|D-nodet and two edges, one fromok to t and the
other is frompk to either t or the head of a type safej-expression path such thatt is the
deduced type of the thatj-expression path.

Thededuced typeof the i-expression path is the t|D-node with an incoming r-edge fromoi+1.

It is easy to see that no overload path from Figure6 makes the expression path in Figure5 type
safe.

4 The Type-Checking Program

This section describes the graph programTTC which performs the name lookup and type checks
source-code graphs. The section also shows how message graphs are interpreted with graph
conditions.

A schematic of how the subprograms ofTTC interact is shown in Figure7. Intuitively,
TTC works as follows: The input is a source-code graph, each expression path is marked by
MarkExpression, andCompare moves this marker through the path until it reaches the tail
or a type clash. At a type clash,Recover either solves it or generates an error message. For
markers at a tail,Resolve finds the deduced type of the expression path (i.e. it resolves the
type of a subexpression). This chain is then iterated as longas new work is made available by
Recover andResolve for Compare. The yield ofTTC is a message graph. Programs and
rules are described in more detail below.

Definition 7 (TTC) Let the graph programTTC = MarkExpression↓;TypeCheck↓
with the subprograms:

TypeCheck = Compare↓+;Recover↓;AfterRecover↓;Resolve↓
Compare =

{

Lookup,CompareNext,FindType
}

Recover = {Cast,Warning,Error}

Resolve =

{

ResolveSubexpression,
ResolveExpression1,ResolveExpression2

}

9 / 14 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs

MarkExpression↓

Compare↓+ Recover↓ AfterRecover↓ Resolve↓

source-code graph

message graph

TypeCheck↓

Figure 7: Structure ofTTC.

MarkExpression↓ is executed before the actual type checking starts and markss each ex-
node with an=-edge to show where the evaluation starts. To avoid duplicate evaluation, a loop
is also placed at the ex-node and checked for in the application condition.

MarkExpression: op ex ⇒ op
=

ex , ¬∃
(

op ex
)

Compare↓+ consists of the rulesLookup, CompareNext, andFindType, see Figure8.
They move the=-edge generated byMarkExpression through the expression path as long
as a matching overload path can be found. The program halts when it completes this matching
or encounters a problem: that no overload path makes this expression path type safe or that this
node in the path depends on the deduced type of a subexpression. The ruleLookup finds the
overload tree for a marked expression’s name.CompareNext matches the type signature of
the expression path to an overload path parameter by parameter. The ruleFindType is applied
at the tail of the expression path and deduces the expression’s type via the matched overload
path’s return type. The rule’s application condition makessure that this is actually the tail of the
expression path.

Lookup :
ex p

t|D

olop

p

p
= ⇒

ex p
t|D

olop

p

p
=

CompareNext:
ex p p

t|D

olol

p

p
= ⇒

ex p p
t|D

olol

p

p
=

FindType:

ex p t|D

olol

r= ⇒

ex p t|D

olol

d
r ,

¬∃









ex p p t|D

olol

r=









Figure 8: Rules in the programCompare.

Proc. GT-VMT 2008 10 / 14

ECEASST

Recover↓ consists of the rules Figure9 and tries to find alternative overload paths by implicit
type casts. The ruleCast finds a type cast that causes no loss of precision.Warning works as
Cast but uses a cast with a possible loss of precision. For this we generate a warning, a W-node
with three outgoing edges: the location of the problem, the original type, and the cast type. The
application condition make sure thatCast is preferred. The ruleError is applied when there
is no solution by implicit type casts. An error node is therefore generated. It has three outgoing
edges, to the p-node where it occurred, the faulting type, and a suggested type. The application
condition limitsError from being applied whereCast or Warning could be applied instead.

Cast :
p|ex

ol|op

p

ol t|D

t|D

=
p

p

c ⇒
p|ex

ol|op

p

ol t|D

t|D

R p

p

c

Warning:

p|ex

ol|op

p

ol t|D

t|D

=
p

p

pc ⇒
p|ex

ol|op

p

ol t|D

t|D

R p

p

pc
W

from

to ,¬∃



















p|ex

ol|op

p

ol t|D

t|D

=
p

p

pc

ol

t|D
p

c



















Error :

p|ex

ol|op

p

ol t|D

t|D

=
p

p|r

⇒

p|ex

ol|op

p

ol t|D

t|D
p

p|r

E
on

suggestion ,

¬∃



















p|ex

ol|op

p

ol t|D

t|D

=
p

p|r
ol

t|D
p

c|pc



















∧¬∃















p|ex

ol|op

p

ol t|D

t|D

=
p

p|r

c|pc















Figure 9: Rules for the programRecover.

AfterRecover↓ performs some cleanup work forRecover↓, generated R-edges are reset
to =-edges.

AfterRecover: ex|p
R

op|ol ⇒ ex|p = op|ol

Resolve↓ consists of three rules, as shown in Figure10: ResolveSubexpression re-
places a subexpression with its deduced return type.ResolveExpression1marks an expres-
sion as evaluated with a dashed edge.ResolveExpression2 does the same in the special
case when the return type is the same as the specialization inwhere the expression occurs.

Example4 The graph in Figure11is the yield ofTTC applied to the overload tree from Figure6
and the expression path from Figure5. See [AP07] for more examples.

11 / 14 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs

ResolveSubexpression:
p

t|D

ex

d ⇒

p

t|D

ex
p

ResolveExpression1 :
D

t|D

ex

d ⇒

D

t|D

ex

ResolveExpression2 : D
d

ex ⇒ D ex

Figure 10: Rules inResolve.

op: +=

t : functions & operators

D: icon<resolution<128>>

D: icon<resolution<32>>

ol

pol

ol

ol

ol

ol

ol

p

p

r

p

p

r

ex

p

p

p
p

p

p
E

on

suggestion

=
=

=

Figure 11: Portion of a message graph.

Remark 2. After the termination ofTTC, graph conditions can help to interpret the message
graph. A graph is anerror (warning) graph iff it satisfies the condition∃(/0→ E) (∃(/0→

W)). A particular declaration can safely be instantiated if its corresponding D-node satisfies

the condition¬∃(D → D ex). If that condition is not satisfied, then one of its expressions
could not be resolved and the programmer must take appropriate actions. A message graph will
contain all the detected errors for the corresponding source code. Graph conditions can therefore
help programmers to locate the areas of the graph that contain such errors. An implementation
of this approach should be able to highlight the areas containing the errors.

Remark 3.The size of the resulting message graph will not grow more than linearly with the size
of the corresponding source-code graph. This is so since every expression tree can at most be
marked by one error message. For size of source-code graphs,see Remark1

5 Correctness and Termination

We now define correctness with respect to errors and termination for graph programs. We give
the ideas for proving thatTTC terminates and is correct w.r.t. errors.

Definition 8 (Correctness and Completeness) A graph programP is correct with respect to
errors if for every pair G,H ∈ JPK, H is an error graph impliesG is not a type-safe source-
code graph. If the converse of the implication holds, we say thatP is complete w.r.t. errors.

Proc. GT-VMT 2008 12 / 14

ECEASST

Theorem 1(Correctness) The graph programTTC is correct with respect to errors.

Proof idea. Errors are only generated byRecover and consumes an=-edge that should have
been consumed byCompare↓+, given thatTTC were initially dealing with a type-safe source-
code graph. A complete proof is given in [AP07].

Fact 1. The graph programTTC is not complete with respect to errors. E.g.Recover uses
implicit type casts, and thereby avoids generating errors for some non-type-safe graphs. It has
not yet been investigated whether or not other counterexamples exist.

Definition 9 (Termination) Terminationof a graph program is defined inductively on the struc-
ture of programs: (1) Every rulep is terminating. (2) For a finite setS of terminating programs,
S is a terminating program. (3) For terminating programsP and Q, (P;Q) is terminating.
Moreover,P∗ andP↓ is terminating if for every graphG, there is no infinite chain of derivations
G⇒P G1⇒P . . . where⇒P denotes the binary relationJPK on graphs.

Theorem 2(Termination) The graph programTTC is terminating.

Proof idea.Compare is applied at least once for every iteration ofTypeCheck and consumes
solid edges that are not generated by the other subprograms.A complete proof is given in [AP07].

6 Conclusions

We considered the template instantiation mechanism in C++ and showed how to write visual
rules for type checking and error message generation. We informally described how source code
was transformed into source-code graphs and defined type safety for graphs. We transformed
source-code graphs into message graphs, a transformation given by the graph programTTC
which type checked source-code graphs. The program automatically corrected some errors by
implicit type casts. It emitted error messages for type clashes that it could not correct. Proof
ideas were given for termination and correctness w.r.t. errors.
Further topics include:

1. Analysis of source-code graphs by generalized graph conditions. Graph properties like
“There exists a warning or error node” can be expressed by graph conditions in the sense
of [HP05]. It would be interesting to generalize graph conditions somore complex graph
properties like “The graph is type safe” becomes expressible.

2. Debugging and a transformation from message graphs to source code. The error messages
generated byTTC contained suggestions for remedies. In the double-pushoutapproach to
graph transformation, a central property is the existence of an inverse rule, that when ap-
plied reverses the rewrite step of the rule [EEPT06]. In this way, the inverse rule allows for
back tracking to a previous graph which can be manipulated toexperiment with suggested
remedies. The changes are logged in the output graph (message/change graph) and used
by a source-code transformer to update the source code.

13 / 14 Volume 10 (2008)

Type Checking C++ Template Instantiation by Graph Programs

3. Implementation of the approach. This would include a formalization of the transformation
from source code to source-code graphs and an extension of the set of considered template
features.

Acknowledgements: This work is supported by the German Research Foundation (DFG) un-
der grant no. HA 2936/2 (Development of Correct Graph Transformation Systems). We thank
Annegret Habel for constructive suggestions that improvedthe paper.

Bibliography

[AG04] D. Abrahams, A. Gurtovoy.C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond. Addison-Wesley Professional, 2004.

[AP07] K. Azab, K.-H. Pennemann. Type Checking C++ TemplateInstantiation (long
version). Technical report 04/07, University of Oldenburg, 2007. Available at
http://formale-sprachen.informatik.uni-oldenburg.de/%7Eskript/fs-pub/templateslong.pdf.

[CE00] K. Czarnecki, U. W. Eisenecker.Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, 2000.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph Transforma-
tion. EATCS Monographs of Theoretical Computer Science. Springer, 2006.

[GPG04] T. Gschwind, M. Pinzger, H. Gall. TUAnalyzer–Analyzing Templates in C++ Code. InProc.
of WCRE’04. Pp. 48–57. IEEE Computer Society, 2004.

[HP01] A. Habel, D. Plump. Computational Completeness of Programming Languages Based on
Graph Transformation. LNCS 2030, pp. 230–245. Springer, 2001.

[HP05] A. Habel, K.-H. Pennemann. Nested Constraints and Application Conditions for High-Level
Structures. LNCS 3393, pp. 293–308. Springer, 2005.

[Jos99] N. M. Josuttis.The C++ Standard Library: a tutorial and reference. Addison-Wesley, 1999.

[PMS06] Z. Porkoláb, J. Mihalicza,́A. Sipos. Debugging C++ template metaprograms. InProc. of
GPCE’06. Pp. 255–264. ACM, 2006.

[PS04] D. Plump, S. Steinert. Towards Graph Programs for Graph Algorithms. LNCS 3256, pp. 128–
143. Springer, 2004.

[Str00] B. Stroustrup.The C++ Programming Language. Addison-Wesley, 3rd edition, 2000.

[Str04] B. Stroustrup. Abstraction and the C++ Machine Model. LNCS 3605, pp. 1–13. Springer,
2004.

[Vel98] T. L. Veldhuizen. Arrays in Blitz++. LNCS, pp. 223–230. Springer, 1998.

[VJ02] D. Vandevoorde, N. M. Josuttis.C++ Templates: The Complete Guide. Addison-Wesley,
2002.

Proc. GT-VMT 2008 14 / 14

http://formale-sprachen.informatik.uni-oldenburg.de/%7Eskript/fs-pub/templates_long.pdf

	Introduction
	Graph Programs
	From Source Code to Source-Code Graphs
	The Type-Checking Program
	Correctness and Termination
	Conclusions

