Electronic Communications of the EASST

Volume 10 (2008)

Proceedings of the
Seventh International Workshop on
Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

A Graph-Based Type Representation for Objects
Cong-Cong Xing

16 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

@ ECEASST

A Graph-Based Type Representation for Objects

Cong-Cong Xingt

1 cmps-cx@nicholls.edu
Department of Mathematics and Computer Science
Nicholls State University
Thibodaux, LA, USA

Abstract: Subtyping and inheritance are two major issues in the researd devel-
opment of object-oriented languages, which have beentiadlly studied along
the lines of typed calculi where types are represented asrdbioation texts and
symbols. Two aspects that are closely related to subtypiddrdneritance — method
interdependency, and self type and recursive object typave bither been over-
looked or not received sufficient/satisfactory treatmelmtshis paper, we propose a
graph-based notation for object types and investigateuhtyging and inheritance
issues under this new framework. Specifically, we (1) idgrttie problems that
have motivated this paper; (2) propose an extension to ABadilelli’'s ¢-calculus
towards fixing the problems; (3) present definitions of obfgpe graphs followed
by examples; (4) define subtyping and inheritance usingcolijge graphs; (5)
show how the problems can be easily resolved under objeet dygphs; and (6)
summarize the contributions of this paper.

Keywords: Object type, graph transformation

1 Introduction

As pointed out by Markku Sakkinen ishk03, although in recent years the emphasis of the re-
search and development in object-oriented programmingR)df@s shifted from programming
languages (themselves) to larger entities such as comfgmr@wironments, and manipulating
tools, it does not mean that the existing object-orienteglages are perfect and no improve-
ment is needed. In particuldyping is still a critical issue and a problem-prone area in the &drm
study of object-oriented languages, especially when tgtsed subjects, such as subtyping and
inheritance, are considered.

One aspect related to subtyping is object method interdkgrames: the invocation relation-
ship among methods. The failure of keeping track of this ¢atimn structure in object types
can cause elusive programming errors which will inevitattgur, undermine the program re-
liability, and burden the program verification. One aspetdted to inheritance is self type vs.
recursive object type: which one is ttree type of the self variable (in the context of inheritance).
The failure of not distinguishing these two types suffidigcin lead to some well-known fun-
damental problems. While the former aspect has been okexdom the literature, the latter
has not received sufficient attentions and/or satisfadiegtments, in either theoretical studies
(e.g., AC96, FHM94, LC96, Liq98, BL95]) or mainstream practice (e.g., Java and C++) of OOP.
In the next section, we present concrete examples to #itesthis point.

1/16 Volume 10 (2008)

A Graph-Based Type Representation for Objects ﬁ

2 Motivations

We present two problems that have motivated the writing isfplaper.

2.1 Method Interdependency

We call a rectangldree if its two sides (height and width) are independemtystrained other-
wise. In conventional type systems, the type of a free rgdtaand the type of a constrained
rectangle are not distinguished. We show, in this subsgctitt this type confusion opens the
door to let the different semantics of free rectangles amgtrained rectangles be mixed, which
is serious enough to be able to cause a prognatrto perform to its specification and thus
weakens its reliability.

Using Abadi-Cardelli’s first-ordeg-calculus notation4AC96], we can construct a free rectan-
gle fRect, a constrained rectangRect, and their type$R, CR as follows:

(h:int] h=1
w:int w=2
def mvh:int — Self def /. mvh=A(i:int)(sh<sh+i)
FR= p(S8lf) mww :int — Self |’ fRect = ¢(s:FR) mw = A (i:int)(sw<=sw+i) |’
geth:int geth=s.h
| getw @ int i | getw = sw i
[h:int i h=1 i
w:int w=2(s.h)
def mvh :int — Self def /. mvh=A(i:int)(sh<sh+i)
CR= p(SHf) mww :int — Self |’ CRect = ¢(s:CR) mvw = A (i:int)(sw<=sw+i)
geth : int geth=sh
| getw : int i | getw = sw i

Informally, FR denotes the (data) type of the objéRect (explained below) which contains
the following fields/methodsh, w, mvh, mvw, geth, getw. Also, the types oh, w, geth, getw are all
int, signifying that when these fields/methods are called, ti#tyeturn an integer. The types of
mvh, mvw are bothint — Self, where the variabl&elf is bound by the standard recursion binder
U. In other words, we can understand the typesnofi and mvw asint — FR, meaning that
these methods take an integer and returns an object ofigp@he typeCR can be understood
similarly. (Actually, we can see th&R andCR specify the same type here.)

fRect denotes an object which consists of fields/methoasmvh, mvw, geth, getw. The values
of handw are 1 and 2 respectively. Methgeth, when being called, returns the valuehof(The
symbolsin s.h represents the hosting object in such a way that we can regaes$this.h in
Java.) getw is similar togeth. Methodmvh is a function that takes an integeradds it to the
current value oh, updates/overrides the current valuehdby the sum, and returns the newly
updated object. Methohvw is similarly tomvh.

While objectcRect works in a similar fashion to obje¢Rect, note their difference: ifiRect,
the height [1) and the width) are independent, whereasdRect, the widthdepends on the

Proc. GT-VMT 2008 2/16

@ ECEASST

height v = 2(s.h)). Also note thatFR = CR, that is, the types of these two rectangles are
confused (in conventional type systems).
Now, suppose we would like to have a function with the follogvspecification (contract):

This function takes a rectangle and then doubles both its height and its width.

With little effort, such a function can be written as:
ds £ A(r: FR)(r.mvh(r.geth)).mw(r.getw).

It is easy to check thats will double its argument’s both sides when taking a freeaeglte as
argument. However, whetts takes a constrained rectangle as argument, for exadspb&ect)

(due to the fac€ER = FR, cRect will type-check), it will fail to do so, as it is supposed toy(the
specification). In detalil,

ds(cRect) = (cRect.mvh(cRect.geth)).mvw(cRect.getw)

h=2
= ¢(s:CR) |:W6] .

...ho change...

Clearly, the height ofRect is doubled, but its width iripled (not doubled)! The reason for this
is the interdependency between the height and the widtRéat: when the height o€Rect is
changed to 2, its width isnplicitly changed to 4 due to the width’s dependence on the height.

Considering that the widely-agreed notion of program bdlity refers to (e.g. $eb07) “pro-
gram performs to its specification under all circumstanees! that the fact thats does not live
up to its specification when takirgRrect as its argument, we argue that the reliabilitydsfin the
environment of conventional type systems, is substaptiai. Furthermore, such elusive com-
putation fault may be hard-to-detect whasis embedded in large software systems. To resolve
this problem effectivelyrs should be written in such a way that it only takes free redemdhat
is, ds(cRect) should be caught by the type checker. This observation fmallhie separation of
the type of free rectangles from that of constrained ones.

2.2 Self Type and Recursive Object Type

The notion of self type is coined to describe the type of thevseiable in an object, especially
when the object contains a self returning method. Then thstepn is: What is the (semantics of)
self type? Is it just the (recursive) object type or somegldtse? For example, using the notation
of ¢-calculus again, an object which consists of two methods,returning the constant 1 and
one returning the hosting object itself can be coded &5[l; = 1, |, = ¢(s: X)s], wheres is
the self variable andX is the type ofs — the self type. How do we interprét? One “natural’
way is thatX is just the object type itself (recursively defined), thatdis= p(Y)[l1 :int, 15:Y].

As this interpretation works to some extent but runs intcstautitial problems (see, e.gAT96]

for details), other explanations of the self type have beemgist. For example, the second-order
self quantifier AC96] and the MyType Bru94] are proposed. Nevertheless, no mater how self
type is interpreted, an object type has always been managee & subtype of the associated

3/16 Volume 10 (2008)

A Graph-Based Type Representation for Objects ﬁ

self type. This setup, combined with inheritance and dycafigpatch of methods, leads to the
well-known “method-not-found” error as illustrated bel¢adapted fromBru94).

def

PT = ObjectType(MyType){x:int,eq: MyType — Bool }
CPT & ObjectType(MyType){x :int,c: color, eq: MyType — Bool }
pto & object(self : MyType){x=0,eq= fun(p: MyType)(p.x = self .x)}

def

pt = object(self : MyType){x=1,eq= fun(p: MyType)(p.x=sa f.x)}

def

cpt = inherited from pt with {c =red, eq= fun(p: MyType)[(p.x=sd f.X) A (p.c=sel f.c)|}
F = fun(p: PT)(p.eq(pto))

Given these definitions, it is easy to check tipgi: PT, pt:PT, andcpt :CPT. Note that
in the definition ofF, we actually have assumed (a3r(194 does) that the type ofty, PT,
is a subtype of the self type associated wW#h, MyType in this case, so thagp.eq(pto) type-
checks. Now, if inheritance implies subtyping (as we havenbgracticing in C++ and Java),
thencpt : CPT <: PT andF (cpt) will type check. HoweverF (cpt) will crash and produce a
“method-not-found” error becausgt.eq(pty) expects its argumenty, to have a color field and
uses that color field in the body ef] of cpt, but ptg does not have the color field.

Traditionally, it is this kind of problem that has prompteslto claim that “inheritance is not
subtyping” [CHC9(. However, “inheritance implies subtyping” is a stronglgsitable property
in OOP. Without it, the software hierarchy build through éntance will be much less useful
since in this case a subobject (object from a subclass) tdnrencegarded as having the same
type with its superobject (object from the superclass),@rhot use any existing programs that
have been written for superobjects. Program reusabilitiytinis be greatly reduced. Towards
keeping this hierarchy useful and resolving the methodfmand problem at the same time, we
propose that an object type should not only be treated differ from its associated self type,
but not be regarded as a subtype of its associated self tijpe.ei

3 Enhancing Object Types

In order to address the problems outlined in the previouiasgonve extend Abadi-Cardelli’'s
¢-calculus by adding a mechanism called links that captueentiethod interdependencies in
objects, and by distinguishing (recursive) object typesnfrtheir associated self types. The
terms M) and types §) of this extended calculus are as follows.

M = X|A(X:0).M|MM; | M.l |M.I<=¢(x:.Z(A)M | [li = ¢(x:.Z (A)M]],
o = K|t|og—o|ut)o|AlS(A)
A = 1O[iL):a)t, LiC{l,..., I} for eachi

X, A(x:0).M, andM;M; are the standardl-terms, wherecis a variableA (x: 0).M stands for
a function with parametex of type o and bodyM, andM1M, denotes the function application

Proc. GT-VMT 2008 4/16

@ ECEASST

(M1 is applied toM). [li = ¢(x:.7(A))Mi]{; represents an object consistingnahethods, with
namesd; and bodiedVj; for eachi. ¢ is the self-binder.M.l means the invocation of methdd
in M. M.I<=¢(x:.(A))M’ is the updating operation which evaluates to an object obthby
replacing methodlin M by M’. (See section 2.1 for more detailed explanations.)

K,t, 01 — 0z, andp(t)o are ground types, type variables, function types, and sa@itypes
respectively. Object types are represented (bl (L;): gi]'_; where each methdgdhas typeo;,
andL; is the set oflinks of |; (defined below).! is the self-type binder. An alternative way to
represent self type is”(A) which denotes the self type associated with the object fyp€he
two notations are related b= 1 (t)[li(Li): 6i(t)]’; = [li(Li): 6i(Z(A))];. Terms that can
be of a self type are restricted to self (variable) or a modli§elf (for the sake of self variable
specialization during inheritance).

Definition 1 Given an objecil; = ¢(s:.(A))Mi]._;. The only terms that are of typ#’'(A) are
sorsli<=¢(s:.7(A))M for someM.

The set of links, which is a part of the newly proposed objgges, is defined as follows.

Definition 2 (Links) Given an objeca = [l; = ¢(s:.(A))M;]!,, (1) |; is said to bedependent
onl;(i # j) if there exists M such that.l; and(a.l;<¢(s:.(A))M).l; evaluate to different val-
ues. (2)The set dfnks of |; in objecta (or equivalently, ofV; with respect to object), denoted
by La(li) (or equivalently, byt a(M;)), contains exactly all sudh on whichl; is dependent.

Remarks: The idea behind “methoklis dependent on methagin objecta” is the following:
if we can make some change to the bodylpfand that change affects the evaluationliof
(compared with the evaluation &f before the change is made I, then we say thatl}' is
dependent ofy”. Taking the collection of all such;’s on whichl; is dependent forms the set of
links of I; in objecta— La(l;).

4 Object Type Graphs

The notion of links introduces new structures into objegiety. Object types are thus enriched
but also become more complicated. To effectively analyzkraason about the structure of the
new object types, we present a graph-based representatiobjéct types — object type graphs
(OTG).

4.1 Definitions

Definition 3 (Directed Colored Graph) A directed colored graph Gis a 6-tuple(Gy, Ga,C, s1,tg, C)
consisting of: (1) a set afodes Gy, and a set oércs Ga; (2) acolor alphabet C; (3) asource
map s : Ga — Gy, and atarget map tg : Ga — Gy, Which return the source node and target
node of an arc, respectively; and (4¢@or map c: Gy U Ga — C, which returns the color of a
node or an arc.

5/16 Volume 10 (2008)

A Graph-Based Type Representation for Objects @

Definition 4 (Ground Type Graph) A ground type graph is a single-node colored directed
graph which is colored by a ground type.

Definition 5 (Function Type Graph) A function type graph (s,G1,Gz2) Gy GacCstge) IS @ di-
rected colored graph consisting exactly aftarting node s € Gy, and two type graph&; and
Gy, such that, (1x(s) =—; (2) there are two arcs associated with the starting repdieft arc
| € Ga andright arcr € Ga, such that(l) =in, c(r) = out; | connectsG; to sby sr(l) = sg,,
tg(l) = s, andr connectssto G, by sr(r) = s, tg(r) = sg,, Wheresg, andsg, are the starting
nodes ofG; andG,, respectively; (31 andG, are disjoint; (4) if there is an a@ < Gp with
c(a) = rec, thensr(a) = sg;, tg(a) =S, ¢(sg,) =—, 1 =1,2.

Definition 6 (Object Type Graph) An object type graph (s,A,R, L, S)(g,,caCstgc) IS @ directed
colored graph consisting exactly of@rting node s € Gy, a set ofmethod arcs A C Gp, a set of
rec-colored arcR C Gy, a setofink arcsL C Gp, and a set of type grapi® such that (1x(s) =
sf. (2)Vae A sr(a) = s tg(a) = s for some type grapk € S andc(a) = mfor some method
labelm; c(a) # c(b) fora,b € A,a#b. (3)Vr € R, c(r) =rec, tg(r) =s, sr(r) = s¢ for some
F € S andc(se) = sdf. (4)Vl €L, sr(l) = s¢, tg(l) = sg for someF, G € S andc(l) = bym for
some method labeh.

Remarks: Directed colored graph is the foundation of graph grammeoh[EPS73Ehr78
R0z97. Object type graphs are adapted from directed coloredhgra@round type graphs are
trivial. Function type graphs are straightforward. Thegahéo be defined because an object type
graph may include them as subgraphs. The basic idea of djergraphs can be described as
follows: For object type (t)[l;(Li): 6] ,, we use a designated node — the starting reghich
is colored bysdlf — to represent the self type; for each methodf type g;, we represent it by
alj-colored arc that starts frosiand ends at a node which (1) is coloreddypyif g; is a ground
type, or (2) is the starting node of a (sub-) type graph otiswfor each link € L; of |;, we
represent it by an arc which is colored byt and goes from the end node of the arc representing
| to the end node of the arc representing

For the sake of brevity, we drop the subscripts (8 Gi1,G2)y GaCstge) and
(S, AR L, S)(gy,Gacstgc) Whenever possible throughout the paper.

4.2 Examples of OTG

We now provide some examples to illustrate the definitiotrettuced in the last section. Through-
out this section, if the type of an objezis represented by a grapt we will say the type o&is
A, and vice versa.

Examplel In Figurel, A, B, andC are the type graphs for the three ground tyipeseal, and
bool respectively. They are just a node colored by the apprapgedund typesD is the type
graph for function typént — int. E is the type graph fofint — B) — int, whereB is the object
type in Figure2(a)which will be explained in the next example.

Example 2 In Figure2(a) graphA denotes the object tyge:int,y:int], where methods and

Proc. GT-VMT 2008 6/16

@ ECEASST

(a) (b)
Figure 2: Example of Object Type Graphs

y are independent of each other. Graphenotes the typk:int,y({x}):int] wherey depends
onx. Note that the direction of the link arc Biis fromx toy (not fromy to x), and that the link
is colored bybyx, signifying that changes made to methowill affect methody. For instance,
an object of typeéA may be[x = 1, y = 2] (which is actually a record), and an object of type
may belx =1, y=¢(s:.7(B))(sx+2)].

Note also that although the presence of the linB ior the absence of the link ifs serves as
an extra condition (compared to conventional type systéonselecting objects to be typed Aas
or B respectively, there are still infinitely many objects tha af typeA or typeB. For example,
objects[x = m,y = n|] with m,n € N are all of typeA; objects[x = n,y = ¢(s: B)(a(s.x) + b)]
with n,a,b € N are all of typeB. In this sense, OTG is (still) an abstract specification gécb
behaviors.

Example 3 In Figure2(b), A is the type graph for(t)[x:int,mvx({x}):int — t] which is the
type of a simplified 1-d movable poift = 1,mvx = ¢(s:B)A (i:int)(sx<sx+1)]. The facts
thatmvx depends or and returns a modified self object are indicated bybxecolored arc and
the out-colored arc respectively. Note the direction of thi-colored arc goes to the starting
node of the type graph directly, indicating that this is & 8gle (as opposed to recursive objet
type). GraplB represents the type of the object 1, b= p, c({a,b}) = ¢(s:.7(B))s where

p is some predefined object of tyBe Here, note that the fact thats of recursive object type is
depicted by &l f-colored node and eec-colored arc going from this node to the starting node
of the graph; and that the fact thats of self type is depicted by its method arc going directly

7116 Volume 10 (2008)

A Graph-Based Type Representation for Objects @

to the starting node of the graph. The difference betweeamrsee object type and self type is
clearly represented in object type graphs.

5 Subtyping under OTG

Given the definition of OTG, we now investigate the issue titygping under OTG. Throughout
the paper, we writéd\, <: B; iff 0 <: T whereo andr are types and\, andB; are their type
graphs. We first present the necessary definitions and tleerdprsome subtyping examples.

5.1 Definitions

Definition 7 (Type Graph Premorphism) Let ® be the set of ground types. Given two type
graphsG = (G, Ga,C,s1,tg,c) and G’ = (Gy,G),C’, o', td,¢'), a type graph premorphism
f:G— G is a pair of mapg fn:Gn — Gy, fa:Ga — Gj), such that (1§a € Ga, fn(sr(a)) =
s'(fa(a)), fn(tg(a)) =td'(fa(a)), andc(a) = (fa(a)); (2) Vv e Gy, if c(v) € @, thenc'(fy(Vv)) €
®; otherwisec(v) = c/(fn(V)).

Definition 8 (Base, Subbase) Given an object type graph = (s,A,R,L,S). Thebase of G,
denoted byBa(G), is the grapHs,At(A),L), wheret(A) = {tg(a) | a€ A}. A subbaseof Gis a
subgraph(s,A',t(A'),L’) of Ba(G), whereA' C A, L' C L, t(A') = {tg(a) | ac A'}, and for each
| € L' there existy,ap € A’ such thasr (1) =tg(a;) andtg(l) =tg(az).

Definition 9 (Closure, Closed) Theclosure of a subbas® = (s,A’,t(A’),L") of an object type
graphG = (s,A,R,L,S), denoted byCl (D), is the unionD U E; U E, where (1)E; = {l € L |
Jag,a € A with tg(ag) = (1), tg(az) =tg(l)}, and (2)E2 = {I,h,at(l) [l,he L, ac A a¢
A’ tg(l) = sr(h) =tg(a), and3ay,a, € A’ such thatg(a;) = sr(1), tg(az) =tg(h)}. A subbase
D is said to beclosed if D =CI(D).

Definition 10 (Covariant, Invariant) Given an object type grapts, A R,L,S). Lett(A) =
{tg(a) | a€ A}. For eachv € t(A), if vis not incident with any links, or it is the target node
of some links but not the source node of any links, thénsaid to becovariant; otherwisey is
said to benvariant.

Definition 11 (Object Subtyping) Given two object type graph& = (sg,As,0,Lg,Ss) and
F =(s,Ar, 0L, S). F <: Gif and only if the following conditions are satisfied: (1) Tke
exists a premorphisni from Ba(G) to Ba(F) such thatf (Ba(G)) = CI(f(Ba(G))). That is,
f(Ba(G)) is closed. (2) For each nodein f(Ba(G)), letu be its preimage iBa(G) underf,
F, € S be the type graph withk as its starting node, ar@, € S be the type graph with as its
starting node. (i) Ivis invariant, therk, is isomorphic taG,. (i) If vis covariant, thei, <: Gy.

Remarks: We now briefly explain the intuitive ideas behind these daéing. Type graph pre-
morphism is adapted from graph morphism which is a fundaah@aincept in algebraic graph
grammarsEPS73Ehr78 Roz97. It preserves the directions and colors of arcs and theasolb
nodes up to ground types. The base of an object type graplesitige method interdependency

Proc. GT-VMT 2008 8/16

@ ECEASST
X y X y
A B

(a) (b)
Figure 3: Examples of Object Subtyping

information out of the entire object type graph so that thecstire of the method interdependen-
cies can be better studied. A subbase of a base is a subgrdiph lndise and this subgraph by
itself forms a base (of another object type graph). The ctosfia subbase captures the com-
plete behavior of the subbase by including, in addition teredthods and links in the subbase,
all necessary methods and associated links outside of Himsa. A subbase is closed if it coin-
cides with its closure. The notions of covariance and iavare are used to characterize whether
the change of a method can affect another method by chedkéngitections of links that are
incident with the method. The subtyping relation of two @bjg/pes is given by first checking
the structures of the two object type graphs to ensure tlegthiihve the same kind of behaviors,
and then checking the subtyping relations for their sube tyfaphs.

5.2 Examples

We now present some simple subtyping examples.

Example4 Given the two type graphs in FiguBga) clearly we can find a premorphisfrifrom
base oA to base oB such thatf (Ba(A)) is closed; note also that nodén B is covariant. Thus,
B <: A. As an example, we can regard the object 1, y = ¢(s:.7(B))(s.x+ 1)] of typeB as
having typeA.

Example 5 For the two type graphs in Figu@b), we can also find a premorphism from the
base ofA to the base oB, and noder in B is also covariant. But, nodein B is invariant which
requires the corresponding naalén A have the same color — pos (standing for positive integer)
in order to havéB <: A. ButU is colored byint, henceB <: A.

As an example to justify tha& £: A, letb = [x=1, y= ¢(s:.(B))(log(sX) + 1)], it is easy
to checkb: B. If B <: A, thenb: A, and in this case we can update ®ield inb to a negative
integer, say, -1, resulting an object like= [x = —1, y = ¢(s:.#(B))(log(s.x) + 1)]. In this
object, the invocation of methodwill crash sincdog is not defined over negative integers.

Example 6 Considering the graphs andB in Figure4(a) it is easy to check (similar to the
case of exampld) thatB <: A. As an example for this subtyping, an objéct= 1, y = ¢(s:
7 (B))(sx+1), z= 1which is of typeB, can clearly be regarded as having tyoe

Example 7 Let us revisit the two object types in FiguPéa) We haveB £: A, since we cannot

9/16 Volume 10 (2008)

A Graph-Based Type Representation for Objects @

(@) (b)
Figure 4: Examples of Object Subtyping

find a premorphisnf from Ba(A) to Ba(B) such thatf (Ba(A)) is closed. Similarly, there exists
no such a premorphisgfrom Ba(B) to Ba(A) such thaty(Ba(B)) is closed, s £: B.

One may wonder what kind of type (graph) can be of a subtype @fB respectively. Any
subtype ofA must not have a link between methodandy; and any subtype d must have a
link going fromx toy. This is the structural requirement in Definitidd. As a result, object
x=1, y= 1] cannot be regarded as having the same type with the ofgjectl, y = ¢(s:
7 (B))(sx+1)], and vice versa. One may contend that this subtyping is tslniceve so that
some “good” subtyping instances are not allowed by it; weiartpat this is the trade-off in the
sense that the strictness of this subtyping can block angptg@otential programming errors,
as shown in the next example.

Example 8 As the last example, we show how the “free or constrainecangdés problem”
described in section 2.1. The (new) types of the free retg@dRgct and the constrained rectangle
cRect are depicted a andC in Figure4(b). Note that the independence between the height and
the width in the free rectangif®ect and their dependency in the constrained rectacigéet are
faithfully shown by the absence and presence fracolored link between methodtsandw in

F andC, respectively. It is easy to check tiat: F. So if we modify the functiomls of section

2.1 by replacing its parameter typ& by the new typd- in Figure4(b), then the caltis(cRect)

will be rejected under OTG by the compiler since it does npetgheck.

6 Inheritance under OTG

We now turn to the issue of inheritance. Some basic notiogsaph grammar are needed before
we can define inheritance formally.

6.1 Definitions

Definition 12 (Type Graph Production) A type graph production p is a pair of type graph
premorphismd : K — A; andg : K — Ay, whereA; is called thdeft side, A, theright side, and

K theinterface. This is denoted ap = (Ag Ikse Ag).

Proc. GT-VMT 2008 10/16

@ ECEASST

A K
f 8
f PO 2 S K T
i
g
P B k PO, PO,
’V

p j P D H

(a) Graph gluing definition (b) Direct derivation definition

Figure 5: Definitions of Graph Gluing and Direct Derivation

Definition 13 (Type Graph Gluing) Given two type graph premorphisnfs: K — A andg:

K — B. Thegluing of A andB alongK is the pushout of K iR AandK -2 Bin the category
formed by type graphs together with type graph premorphistiggire5(a)).

Definition 14 (Direct Derivation) Given type graph®, D, H, a type graph productiop =
(S<L K2 T), and a premorphisrk: S— P (called a context map). We say thdtis directly

derived from P via p by k, denoted byP Q‘Q H, if P is the result of gluingsandD alongK and
H is the result of gluind> andT alongK (Figure5(b)).

Definition 15 (Unfolding Production and Operation) A graph productionu = (S<f— K -2, G)
is called an unfolding production if (1K is a graph consisting of two nodes andv,, and
c(v1) = c(v2) = sd f; (2) Sis a graph consisting of two nodes andu, and an ard such that
c(u1) =c(up) = sl f,c(t) =rec,sr(t) = up, andtg(t) = ug; (3) f(vi) = u;,i = 1,2; gis a partial
morphism withg(vz) = sg Wheresg is the starting node o&. Given an unfolding production
u= (S<L K- G), an object graplfF, and a premorphism: S— F, we sayF unfolds toP if

F) p

Definition 16 (Addition Production and Operation) A graph productiora = (S<L K25 G)is
called an addition production, if (K consists of only one node andc(v) = sdl f; (2) Sconsists
of only one nodey, andc(u) = sel f; (3) f(v) = uandg(v) = sg wheresg is the starting node of
G. Given an addition productioa = (S<L K- G), an object grapfr, and a premorphism

] : S— F, we say thaP is the result of adding into F if F (a:@ P.

Definition 17 (Link Production and Operation) A graph productiorl = (S<L K -2 G)is
called a link production, if (1% is a graph consisting of two nodesg v, and an ar@ connecting
these two node(v;) (i = 1,2) is either a ground type or-a or asel f, andc(a) = bym, where
m is the color of one of the methods @&; (2) K is a graph consisting of two nodes and u,
with c(u;) is either a ground type or-a or asel f, i = 1,2; (3) Sis isomorphic tK, that is, f is
an isomorphism fronkK to S; g is an injection withg(u;) = v;, i = 1,2; Given a link production

| = (S<L K-, G), an object graplfr, and a premorphistk: S— F, we say thaP is the result

11/16 Volume 10 (2008)

A Graph-Based Type Representation for Objects @

K .G

1 P
v ¢

y N
. @ ()
D / L
x y . N .@ e — s rec
: A : ' ”
()= —~(inn) .
If ‘g " .
e =) NO @)
. . y
) 8 z P g -~ N\
()2 —(in) (i) @) () G
’ (=)
;
D F r

C

(a) Graph gluing (b) Unfolding operation

Figure 6: Examples of Graph Gluing and Unfolding Operation

of embeddingG into F if F 4 p,

Definition 18 (Inheritance Construction of Object Type Graphs) Given object type graphs
andG. F is said to be inherited fror® if G can be transformed inté through a finite sequence
of unfolding operations, addition operations, and linkragpiens.

Definition 19 (Inheritance) Given object type graphS and T, an object of typel can be
constructed by inheritance from an object of typ# T is inherited fromS,

Remarks: The central idea here is that inheritance of objects shaailglided and guarded by
object types. We devise, through some basic graph tranatmmtechniques, an “inheritance”
notion on object types, and then use this notion to judge lvdnetn object can be built through
inheritance from another object. Specifically, type grapbdpction, type graph gluing, and
direct derivation are the standard graph grammar notiorikdrcontext of object type graphs.
An object type graph can be inherited from another object t@ph, if the second object type
graph can be transformed into the first one through a sequ#ramnbinations of three special
productions: unfolding production, addition producti@md link production. An object can be
constructed from another object via inheritance if and dhtlie type of the first object can be
inherited from the type of the second object.

6.2 Examples
We now give some examples to demonstrate the graph opedsfonitions in the last section.

Example9 A graph gluing example is shown in FiguBéa) wheref andg map the only node
in A to thesel f-colored node ilB andC respectively, an® is the result of gluindd andC along
A. Intuitively, this gluing operation entails the conneatiof B andC by identifying their starting
nodes.

Proc. GT-VMT 2008 12716

@ ECEASST

Figure 7:CP is Inherited fromP.

Example 10 Figure6(b) shows an unfolding operatioF. g P, whereu = (S<L K -2 G),
f(vi)=u, i =12 0(v) =Ss, i(u1) =5, i(u) =r. As we can see? can be understood as
constructed by deleting thec-colored arc front, and then glue the result with a copy of the
original F by identifying the starting node of the former with the samirode of thaec-arc of
the latter.

Example 11 We finally show how the “colored point problem” addressedaat®n 2.2 can be
resolved under OTG inheritance and subtyping. The type oitppt andptg and the type of
color pointcpt are depicted a8 andCP in Figure7 respectively. We can see thzi is inherited
from P (through one addition operation and one link operation)ictvimeans thatpt can be
constructed by inheritance fropt (or ptg). Moreover, it is easy to check th@P <: P under
OTG subtyping, which indicates that inheritance and subtyare congruent in this case. (Note
that this contrast with the “inheritance is not subtypinlggan in the literature which is mainly
motivated by this colored point example.) Finally, the bragF (cpt) is prevented since the
functionF, as defined in section 2.2 and in the literature, does notdyeek under OTG typing.
Note in its definitionF = fun(p: PT)(p.eq(pto)), with PT = ObjectType(MyType){x:int,eq:
MyType — Bool }, p.eq requires an argument of the self type associated #ith. (PT), but
pto has typePT, andPT is neither the same as nor the subtype/tdPT) under OTG.

7 Resolution of the Problems

As examples of OTG subtyping and inheritance, we have detrated in the last section that
the two problems outlined in section 2 can be successfuliglved under OTG subtyping and
inheritance mechanisms. Here, we just summarize some paijuts.

e OTG subtyping takes into consideration the method intesddpncies in objects. An ob-
ject in which there is no dependence between two methodsesaam he regarded as having
the same type with or a subtype of that of an object in whichetliean interdependency
between these two methods, and vice versa. The problemssgdrin section 2.1 can be
naturally resolved in OTG since there is an interdependéetyween height and width in
constrained rectangles, and there is no such interdependeriree rectangles. Conse-

13/16 Volume 10 (2008)

A Graph-Based Type Representation for Objects ﬁ

quently, these two kinds of rectangles have different types

e OTG inheritance replies on basic graph derivations. Thdduorental idea in this respect
is that inheritance on objects should be regulated using iyformation of the relevant
objects. An “inheritance” relation over object types istfisfined using graph derivations
and then used to determine whether an object can be corstrbgt inheritance from
another one.

¢ “Inheritance is not subtyping” has been advocated in tieeditire for quite a while. De-
spite that, the mainstream OOP still adheres to the prathiae“inheritance indicates
subtyping”. One of the reasons for this is that without thiagtice, the software hierar-
chy built by inheritance would be almost useless. Thus thastce is highly desirable.
The“colored point problem” described in section 2.2 is ofi¢he motivating examples
that has prompted “inheritance is not subtyping”, becaukerwise we will face some
“method-not-found” error. Under OTG, we give this problemeav solution in the sense
that “inheritance indicates subtyping” is retained andtmoe-not-found” error is avoided.

8 Related Work

Representing object types as directed colored graphs &seguently addressing the subtyping
and inheritance issues by graph transformations is ouinatigdea. It uniquely connects the
type theory of object-oriented languages to algebraiclgtegmsformation theory. The founda-
tions of type theory can be found iBr92 AC96, Pie03, and the recent results and directions
in type theory research are reflected in, for exampleREB0O7 Che07 DHCO07]. The origin

of algebraic graph grammar and graph transformation camaoed back toEPS73 Ehr7g,
and [Roz97 EEPTOG present a comprehensive coverage of this research areeurffent trends
and developments in graph transformation, see for exartipeproceedings of GT-VMT and
ICGT [EGO7, CEM'06].

Incidentally, it is interesting to note that the phrase &ygraph” has been used inconsistently
in the literature. For example, it is used to denote the ditjue rational trees in Prolog type
analysis and database query algebt&€C93 Sch01], to facilitate the investigation of quantifi-
cation in Type Logical GrammamB[s04, and to give types for (some other) graphs in graph
transformation studyGL0O7, EEPTOg. None of these is the same as the (object) type graphs
introduced in this paper. In particular, the notion of typaphs which is used frequently in the
domain of graph transformations refers to the directedlggaphich are designated to abstract
the properties of other (more complex) graphs and therebgrtder the type of those graphs;
whereas the notion of the type graphs addressed in this paflees to a graphical representation
of the usual data types (e.g., primitive types, functioregjpobject types, etc.). Nevertheless,
both notions are thabstraction of certain entities: the former is the abstraction of graphd
the latter is the abstraction of values.

9 Final Remarks

Subtyping and inheritance are two major issues in OOP. Alihdboth issues have been stud-
ied extensively, problems still persist. Two particulaolpems, method interdependencies and

Proc. GT-VMT 2008 14716

@ ECEASST

“inheritance is not subtyping”, are identified and subsetjyeaddressed by a graph-computing
(OTG) approach in this paper. It is demonstrated that bathlpms can be resolved effectively
under OTG subtyping and inheritance mechanisms.

Bibliography
[AC96] M. Abadi, L. Cardelli.A Theory of Objects. Springer-Verlag, New York, 1996.

[Bar92] H. Barendregt. Lambda Calculi with Types. In S. Absky (ed.),Handbook of
Logicin Computer Science. Volume 2, pp. 117-309. Clarendon Press, Oxford, 1992.

[BL9O5] V. Bono, L. Liquori. A Subtyping for the Fisher-Hons#itchell Lambda Calcu-
lus of Objects. InProc. of International Conference of Computer Science Logic.
LNCS 933, pp. 16—-30. 1995.

[Bru94] K. Bruce. A paradigmatic Object-Oriented PrograimgnLanguage: Design, Static
Typing and Semanticgournal of Functional Programming 4(2):127—-206, 1994.

[BS06] C. Barker, C. chieh Shan. Types as Graphs: Contionsin Type Logical Grammar.
J. of Logic, Language and Information 15(4), 2006.

[CEMT06] A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, G. Ra#eerg (eds.)Proc. of
ICGT'06. LNCS 4178, Springer, 2006.

[CHC90] W. Cook, W. Hill, P. Canning. Inheritance is not Sgfihg. In Proc. of POPL.
Pp. 125-135. 1990.

[Che07] J. Chen. Atyped intermediate language for congpifitultiple inheritance. IfProc.
of POPL’07. Pp. 25-30. 2007.

[DHCO7] D. Dreyer, R. Harper, M. Chakravarty. Modular tygaesses. IrProc. of POPL’07.
Pp. 63-70. 2007.

[EEPTO6] H.Ehrig, K. Ehrig, U. Prange, G. TaentZeundamentals of Algebraic Graph Trans-
formation. Springer, 2006.

[EGO7] K. Ehrig, H. Giese (eds.proc. of GT-VMT 07. http://eceasst.cs.tu-berlin.de/, 2007.

[Ehr78] H. Ehrig. Introduction to the algebraic theory ofagh grammars. IrGraph-
Grammars and Their Applications to Computer Science and Biology. LNCS 73,
pp. 1-69. Springer-Verlag, 1978.

[EPS73] H. Ehrig, M. Pfender, H. J. Schneider. Graph grarsman algebraic approach. In
|EEE Conference of Automata and Switching Theory. Pp. 167—180. 1973.

[FHM94] K. Fisher, F. Honsell, J. Mitchell. A Lambda Calcalof Objects and Method Spe-
cialization.Nodic Journal of Computing 1:3—-37, 1994.

15/16 Volume 10 (2008)

A Graph-Based Type Representation for Objects @

[GLO7]

[HCC93]

[LCO6]

[Liq98]

[Pie02]

[PRBO7]

[R0z97]

[Sak05]

[Sch01]

[Seb07]

E. Guerra, J. de Lara. Adding Recursion to Graph Tiansation. InProc. of GT-
VMT 07. 2007.

P. V. Hentenrck, A. Cortesi, B. L. Charlier. Type Ayss of Prolog Using Type
Graphs. Technical report, Brown University, Technical &¢S-93-52, 1993.

L. Liquori, G. Castagna. A Typed Lambda Calculus ofjés. LNCS 1179,
pp. 129-141. Sringer—Verlag, 1996.

L. Liquori. On Object Extension. IrECOOP’98 Object-oriented Programming.
Lecture Notes in Computer Science 1445, pp. 498-522. Srikigdag, 1998.

B. PierceTypes and Programming Languages. MIT Press, 2002.

P. Permandla, M. Roberson, C. Boyapati. A type sydta preventing data races
and deadlocks in the java virtual machine languag®@rte. of LCTES 07. Pp. 1-10.
2007.

G. Rozenberg (ed.Handbook of Graph Grammars and Computing by Graph
Transformation. Volume 1. World Scientific, 1997.

M. Sakkinen. Wishes for Object-oriented Language®roc. of Langages et Mod-
eles a Objets (LMO 2005, invited talk). 2005.

K.-D. Schewe. On the Unification of Query Algebrad diheir Extension to Ratio-
nal Tree Structures. IBroc. of 12th Australasian Database Conference. Pp. 52-59.
2001.

R. SebestaConcetps of Programming Languages. Addison Wesley, 8th edition,
2007.

Proc. GT-VMT 2008 16/16

