Electronic Communications of the EASST

Volume 10 (2008)

Proceedings of the
Seventh International Workshop on
Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

Parsing of Hyperedge Replacement Grammars
with Graph Parser Combinators

Steffen Mazanek and Mark Minas

14 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Parsing of Hyperedge Replacement Grammars
with Graph Parser Combinators

Steffen Mazanek' and Mark Minas’

! steffen.mazanek @unibw.de
2 mark.minas @unibw.de
Institut fiir Softwaretechnologie
Universitdt der Bundeswehr Miinchen, Germany

Abstract: Graph parsing is known to be computationally expensive. For this reason
the construction of special-purpose parsers may be beneficial for particular graph
languages. In the domain of string languages so-called parser combinators are very
popular for writing efficient parsers. Inspired by this approach, we have proposed
graph parser combinators in a recent paper, a framework for the rapid development
of special-purpose graph parsers. Our basic idea has been to define primitive graph
parsers for elementary graph components and a set of combinators for the flexible
construction of more advanced graph parsers. Following this approach, a declara-
tive, but also more operational description of a graph language can be given that is
a parser at the same time.

In this paper we address the question how the process of writing correct parsers on
top of our framework can be simplified by demonstrating the translation of hyper-
edge replacement grammars into graph parsers. The result are recursive descent
parsers as known from string parsing with some additional nondeterminism.

Keywords: graph parsing, functional programming, parser combinators, hyperedge
replacement grammars

1 Introduction

Graph languages are widely-used nowadays, e.g., for modeling and specification. For instance,
we have specified visual languages using graph grammars [Min02]. In this context we are par-
ticularly interested in solving the membership problem, i.e., checking whether a given graph be-
longs to a particular graph language, and parsing, i.e., finding a corresponding derivation. How-
ever, while string parsing of context-free languages can be performed in O(n?), e.g., by using the
well-known algorithm of Cocke, Younger and Kasami [Kas65], graph parsing is computation-
ally expensive. There are even context-free graph languages the parsing of which is NP-complete
[DHK97]. Thus a general-purpose graph parser cannot be expected to run in polynomial time
for arbitrary grammars. The situation can be improved by imposing particular restrictions on the
graph languages or grammars. Anyhow, even if a language can be parsed in polynomial time by
a general-purpose parser, a special-purpose parser tailored to the language is likely to outperform
it.

1/14 Volume 10 (2008)

mailto:steffen.mazanek@unibw.de
mailto:mark.minas@unibw.de

Graph Parser Combinators Eﬁ

Unfortunately the development of a special-purpose graph parser is an error-prone and time-
consuming task. The parser has to be optimized such that it is as efficient as possible, but still
correct. Backtracking, for instance, has to be prevented wherever possible. Therefore, in a recent
paper [MMO8] we have proposed graph parser combinators, a new approach to graph parsing
that allows the rapid construction of special-purpose graph parsers. Further we have introduced
a Haskell [Pey03] library implementing this approach. It provides the generic parsing framework
and a predefined set of frequently needed combinators.

In [MMO8] we further have demonstrated the use of this combinator framework by providing
an efficient special-purpose graph parser for VEX [CHZ95] as an example. VEX is a graph lan-
guage for the representation of lambda terms. The performance gains mainly have resulted from
the fact, that VEX is context-sensitive and ambiguous — properties many general-purpose graph
parsers do not cope well with. The structure of VEX graphs is quite simple though, i.e., they
basically are trees closely reflecting the structure of lambda terms. Only variable occurrences
are not identified by names as usual; they rather have to refer to their binding explicitly by an
edge. Nevertheless, the parser for VEX could be defined quite operationally as a tree traversal.

However, the operational description of languages like, e.g., structured flowgraphs is much
more difficult. Parsers get very complex and hard to read and verify. This brings up the question,
whether graph parser combinators actually are powerful enough to express standard graph gram-
mar formalisms. One such formalism are hyperedge replacement grammars [DHK97], which
allow such languages to be described in a declarative and natural way.

Therefore, the main contribution of this paper is a method for the straightforward translation
of hyperedge replacement grammars [DHK97] to parsers on top of our framework. The result-
ing parsers are readable and can be customized in a variety of ways. They are quite similar to
top-down recursive descent parsers as known from string parsing where nonterminal symbols are
mapped to functions. Unfortunately, in a graph setting we have to deal with additional nondeter-
minism: besides different productions for one and the same nonterminal, we also have to guess
particular nodes occurring in the right-hand side of a production. We can use backtracking, but
performance naturally suffers.

However, our approach can be used to build an initial, yet less efficient parser. Language-
specific performance optimizations can then be used to improve the parser’s efficiency step by
step. Moreover, the presented approach offers the following benefits:

e Combination of declarative and operational description of the graph language.

e An application-specific result can be computed.'

Context information can be used to describe a much broader range of languages.
e Robust against errors. The largest valid subgraph is identified.

This paper is structured as follows: We discuss the combinator approach to parsing in Sect. 2
and introduce our graph model in Sect. 3. We go on with the presentation of our framework in
Sect. 4 and discuss the actual mapping of a hyperedge replacement grammar in Sect. 5. Finally,
we discuss related work (Sect. 6) and conclude (Sect. 7).

1" A general-purpose parser normally returns a derivation sequence or a parse tree, respectively. Several systems,

however, provide support for attributed graph grammars.

Proc. GT-VMT 2008 2/14

Eg ECEASST

2 Parser Combinators

Our approach has been inspired by the work of Hutton and Meijer [HM96] who have proposed
monadic parser combinators for string parsing (although the idea of parser combinators actually
is much older). The basic principle of such a parser combinator library is that primitive parsers
are provided that can be combined into more advanced parsers using a set of powerful combi-
nators. For example, there are the sequence and choice combinators that can be used to emulate
a grammar. However, a wide range of other combinators are also possible. For instance, parser
combinator libraries often include a combinator many that applies a given parser multiple times,
while collecting the results.

Parser combinators are very popular, because they integrate seamlessly with the rest of the pro-
gram and hence the full power of the host language can be used. Unlike Yacc [Joh75] no extra
formalism is needed to specify the grammar. Functional languages are particularly well-suited
for the implementation of combinator libraries. Here, a parser basically is a function (as we will
see). A combinator like choice then is a higher-order function. Higher-order functions, i.e., func-
tions whose parameters are functions again, support the convenient reuse of existing concepts
[Hug89]. For instance, consider a function symb with type Char—>Parser that constructs a
parser accepting a particular symbol. Then we can easily construct a list p1 of parsers, e.g., by
defining pl=map symb [’a’..’z’] (applies symb to each letter). A parser 1c1 that ac-
cepts an arbitrary lower-case letter then can be constructed by folding p1 via the choice operator,
i.e., lcl=foldr choice fail pl. Thereby, fail is the neutral element of choice.

At this point, we provide a toy example to give an impression of how a parser constructed with
monadic combinators looks like. For that purpose we compare the implementation of a parser for
the string language {a*b*ck|k > 0} and a graph parser for the corresponding language of string
graphs as defined in [DHK97].

An important advantage of the combinator approach is that a more operational description of
a language can be given. For instance, our exemplary language of strings a*b*c¥ is not context-
free. Hence a general-purpose parser for context-free languages cannot be applied at all, although
parsing this language actually is very easy: “Take as many a characters as possible, then accept
the same number of b characters and finally accept the same number of ¢ characters.”

Using PolyParse [Wal07], a well-known and freely-available parser combinator library for
strings, a parser for this string language can be defined as shown in Fig. 1a. The type of this
parser determines that the tokens are characters and the result a number, i.e., k for a string a*b*c*.

abc::Parser Char Int abcG: :Node->Grappa Int
abc = abcG n =

do do

as<-manyl (char ’'a’) (n’,as)<-chainl (dirEdge "a") n

let k=length as let k=length as

exactly k (char "b’") (n’’,_)<—-exactChain k (dirEdge "b") n’
exactly k (char ’'c’) exactChain k (dirEdge "c") n’’

return k return k

Figure 1: Parsers for a) the string and b) the graph language a*b*c¥

3/14 Volume 10 (2008)

Graph Parser Combinators Eﬁ

Figure 2: The string graph “aabbcc”

If the given word does not begin with a member of the language one of the calls of exactly
fails.

The code is written in the functional programming language Haskell [Pey03]. The given parser
uses the do-notation, syntactic sugar Haskell provides for dealing with monads. Monads in turn
provide a means to simulate state in Haskell. In the context of parsers they are used to hide
yet unconsumed input. Otherwise, all parsers in a sequence would have to pass this list as a
parameter explicitly. Users of the library, however, do not have to know how this works in detail.
They rather can use the library like a domain-specific language for parsing nicely embedded into
a fully-fledged programming language.

In order to motivate our combinator approach to graph parsing, we provide the graph equiv-
alent to the previously introduced string parser abc. Strings generally can be represented as
directed, edge-labeled graphs straightforwardly. For instance, Fig. 2 provides the graph repre-
sentation of the string “aabbcc”.”

A graph parser for this graph language can be defined using our combinators in a manner quite
similar to the parser discussed above. It is shown in Fig. 1b. The main difference between the
implementations of abc and abcaG is, that we have to pass through the position, i.e., the node n
we currently process.

3 Graphs

In this section we introduce hypergraphs and the basic Haskell types for their representation. Our
graph model differs from standard definitions as found in, e.g., [DHK97], that do not introduce
the notion of a context.

Let C be a set of labels and type : C — IN a typing function for C. In the following, a hyper-
graph H over C is a finite set of tuples (lab, e, ns), where e is a (hyper-)edge® identifier unique in
H, lab € C is an edge label and ns is a sequence of node identifiers such that rype(lab) = |ns|, the
length of the sequence. The nodes represented by the node identifiers in ns are called incident to
edge e. We call a tuple (lab, e, ns) a context in analogy to [Erw01].

The position of a particular node n in the sequence of nodes within the context of an edge
e represents the so-called tentacle of e that n is attached to. Hence the order of nodes matters.

2 Incontrast to the string language there is a context-free hyperedge replacement grammar describing this language.

However, it is quite complicated despite the simplicity of the language (cf. [DHK97]). An Earley-style parser for
string generating hypergraph grammars like this is discussed in [SFO4].

3 We call hyperedges just edges and hypergraphs just graphs if it is clear from the context that we are talking about
hypergraphs.

Proc. GT-VMT 2008 4/14

Eg ECEASST

0 0
1 1

6
0
n:=n+1 1

Figure 3: An exemplary flowchart a) and its hypergraph representation b)

end

The same node identifier also may occur in more than one context indicating that the edges
represented by those contexts are connected via this node.

Note, that our notion of hypergraphs is slightly more restrictive than the usual one, because
we cannot represent isolated nodes. In particular the nodes of H are implicitly given as the union
of all nodes incident to its edges. In fact, in many hypergraph application areas isolated nodes
simply do not occur. For example, in the context of visual languages diagram components can
be represented by hyperedges, and nodes just represent their connection points, i.e., each node is
attached to at least one edge [Min02].

The following Haskell code introduces the basic data structures for representing nodes, edges
and graphs altogether:

type Node = Int

type Edge = Int

type Tentacle = Int

type Context = (String, Edge, [Nodel)
type Graph = Set Context

For the sake of simplicity, we represent nodes and edges by integer numbers. We declare a
graph as a set of contexts, where each context represents a labeled edge including its incident
nodes.*

Throughout this paper we use flowcharts as a running example. In Fig. 3a a structured
flowchart is given. Syntax analysis of structured flowcharts means to identify the represented
structured program (if any). Therefore, each flowchart must have a unique entry and a unique
exit point.

4 1In the actual implementation these types are parameterized and can be used more flexibly.

5/14 Volume 10 (2008)

Graph Parser Combinators Eﬁ

Flowcharts can be represented by hypergraphs that we call flowgraphs in the following. In
Fig. 3b the hypergraph representation of the exemplary flowchart is given. Hyperedges are rep-
resented by a rectangular box marked with a particular label. For instance, the statement n: =0
is mapped to a hyperedge labeled “text”. The filled black circles represent nodes that we have
additionally marked with numbers. A line between a hyperedge and a node indicates that the
node is visited by that hyperedge.

The small numbers close to the hyperedges are the tentacle numbers. Without these numbers
the image may be ambiguous. For instance, the tentacle with number 0 of “text” hyperedges
always has to be attached to the node the previous statement ends at whereas the tentacle 1 links
the statement to its successor. The flowgraph given in Fig. 3b is represented as follows using the
previous declarations:

fcg = {("start",0,[1]), ("text",1,[1,2]), ("cond",2,[2,7,3]),
("cond",3,[3,4,5]), ("text",4,([4,6]), ("text",5,[5,6]),
("text",6,[6,2]), ("end",7,[7])}

The language of flowgraphs can be described using a hyperedge replacement grammar in a
straightforward way as we see in the next section. We provide a special-purpose parser for
flowgraphs on top of our framework in Sect. 5.

4 Parsing Graphs with Combinators

In this section we introduce our graph parser combinators. However, first we clarify the notion
of parsing in a graph setting.

4.1 Graph Grammars and Parsers

A widely known kind of graph grammar are hyperedge replacement grammars (HRG) as de-
scribed in [DHKO97]. Here, a nonterminal hyperedge of a given hypergraph is replaced by a new
hypergraph that is glued to the remaining graph by fusing particular nodes. Formally, such a
HRG G is a quadruple G = (N, T,P,S) that consists of a set of nonterminals N C C, a set of
terminals 7 C C with T NN = @, a finite set of productions P and a start symbol S € N.

The graph grammar for flowgraphs can be defined as Gr¢ = (Nr¢, Trc, Pre, FC) where Npe =
{FC, Stmts, Stmt}, Trc = {start, end, text, cond} and Pr¢ contains the productions given in Fig. 4a.
Left-hand side lhs and right-hand side rhs of each production are separated by the symbol : : =
and several rhs of one and the same Ilhs are separated by vertical bars. Node numbers are used
to identify corresponding nodes of lhs and rhs.

The derivation tree of our exemplary flowgraph as introduced in Fig. 3b is given in Fig. 4b.
Its leaves are the terminal edges occurring in the graph whereas its inner nodes are marked
with nonterminal edges indicating the application of a production. The direct descendants of an
inner node represent the edges occurring in the rhs of the applied production. The numbers in
parentheses thereby identify the nodes visited by the particular edge.

A general-purpose graph parser for HRGs gets passed a particular HRG and a graph as pa-
rameters and constructs a derivation tree of this graph according to the grammar. This can be

Proc. GT-VMT 2008 6/14

Eg ECEASST

‘ FC |::= | start w Stmts w end ‘

1
?
0T1 Stmt u‘. !

Stmts | = ;¢ Stmt
1 1
. .

]
.7
! o “
[stmt] u=[text | 1 cond |)
1]
.
1

Stmts(1,7)

Stmt(1,2) Stmts(2,7)

text(1,2)

Stmt(2,7)

cond(2,7,3) Stmts(3,2)

Stmt(3,6) Stmts(6,2)
‘cond(3,4,5)‘ ’Stmts(4,6)‘ ‘Stmts(S,G)‘ ‘ Stmt(6,2) ‘
| | |
A " cond J* -y ‘ Stmt(4,6) ‘ ‘ Stmt(5,6) ‘ ‘ text(6,2) ‘
‘ Stmts | ‘ Stmts | l l
1 1 | text(4,6) ‘ ‘ text(5,6) ‘

Figure 4: Flowgraphs, a) grammar and b) derivation tree of the example

done, for instance, in a way similar to the well-known algorithm of Cocke, Younger and Kasami
[Kas65] known from string parsing (indeed, all HRGs that do not generate graphs with isolated
nodes can be transformed to the graph equivalent of the string notion Chomsky Normal Form).
This approach has been elaborated theoretically by Lautemann [Lau89] and proven to be useful
in practical applications, e.g., in [Min02] for the syntax analysis of diagrams.

Flowgraphs can be parsed with such a general-purpose graph parser in a straightforward way.
However, as mentioned in the introduction there are graph languages that are not context-free
(and thus cannot be described by a HRG) or that are highly ambiguous (thus causing most
general-purpose parsers to perform poorly). Furthermore, here we are not interested in the deriva-
tion tree, but rather in the program represented by the graph, i.e., its semantics. For these reasons
graph parser combinators are beneficial either way. We now briefly introduce the framework and
describe how the HRG of flowgraphs (and other HRGs similarly) can be translated into a graph
parser on top of our framework.

4.2 The Combinator Library

Due to space restrictions in the following we focus on those types and functions that are needed
to translate hyperedge replacement grammars schematically. Further information and a more
general version of the framework can be found in [MMOS]. First we provide the declaration of
the type Grappa representing a graph parser:

newtype Grappa res = P (Graph -> (Either res Error, Graph))
This type is parameterized over the type res of the result. Graph parsers basically are func-

tions from graphs to pairs consisting of the parsing result (or an error message, respectively) and
the graph that remains after successful parser application.

7/14 Volume 10 (2008)

Graph Parser Combinators

Name Type Description

context (Context->Bool) —> A context satisfying a particular condition.
Grappa Context

labContext String->Grappa Context A context with a particular label.

connLabContext String->[(Tentacle,Node)]—> A labeled context connected to the given nodes
Grappa Context via the given tentacles.

edge Tentacle->Tentacle->String-> A labeled context connected to the given node
Node->Grappa (Node,Context) via a particular tentacle also returning its suc-

cessor (via the other, outgoing tentacle).
dirEdge String->Node—> A directed edge, edge 0 1.

Grappa (Node,Context)

Table 1: Graph-specific primitive parsers

Name Type Description
oneOf [Grappa res]->Grappa res Returns the first successful parser of the input list,
corresponds to | in grammars.
chain (Node->Grappa (Node, res))-> A chain of graphs, a node is passed through.
Node—->Grappa (Node, [res])
bestNode (Node—>Grappa res)-—> Identifies the node from which the best continua-
Grappa res tion is possible, very expensive.
noDanglEdgeAt Node->Grappa () Succeeds if the given node is not incident to an
edge, handy for ensuring dangling edge condition.
allDifferent [Node]->Grappa () Succeeds if the given nodes are distinct, handy for
ensuring identification condition.
connComp Grappa res—>Grappa [res] Applies the given parser once per connected com-

ponent, while collecting the results.

Table 2: Some graph parser combinators

In general, the most primitive parsers are return and fail. Both do not consume any input.
Rather return succeeds unconditionally with a particular result whereas fail always fails;
thereby, backtracking is initiated.

In Table 1 we provide some important graph-specific primitive parsers. They are all nondeter-
ministic, i.e., support backtracking on failure, and consume the context they return. Additionally
we provide the primitive parser aNode : : Grappa Node that returns a node of the remaining
graph (with backtracking).

In Table 2 we briefly sketch some of the graph parser combinators provided by our library.
Variations of chain have already been used in the introductory example, e.g., chainl that
demands at least one occurrence.

Proc. GT-VMT 2008 8/14

EE ECEASST

fc::Grappa Program

fc = do
(_,_,[nl])<-labContext "start"
(_,_,[n2])<-labContext "end"
stmts (nl,n2)

stmts:: (Node, Node)->Grappa Program
stmts (nl, n2) = oneOf [stmtsl, stmts2]
where stmtsl do
s<-stmt (nl, n2)
return [s]
stmts2 = do
n’ <-aNode
s<-stmt (nl, n’)
p<-stmts (n’, n2)
return (s:p)

stmt:: (Node, Node)->Grappa Stmt

stmt (nl, n2) = oneOf [stmtl, stmt2, stmt3]
where stmtl = do
connLabContext "text" [(0,nl), (1,n2)]
return Text
stmt2 = do
(_,_,ns)<-connLabContext "cond" [(0,nl)]

pl<-stmts ((ns!!'l), n2)

p2<-stmts ((ns!!2), n2)

return (IfElse pl p2)

do

(_,_,ns)<-connLabContext "cond" [(0,nl), (1,n2)]
p<-stmts ((ns!!2), nl)

return (While p)

stmt3

Figure 5: A parser for flowgraphs

5 Parsing Flowgraphs

In this section we directly translate the grammar given in Fig. 4a to a parser for the correspond-
ing language using our framework. Our goal is to map a flowgraph to its underlying program
represented by the recursively defined type Program:

type Program = [Stmt]
data Stmt = Text | IfElse Program Program | While Program

In Fig. 5 the parser for flowgraphs is presented. It is not optimized with respect to perfor-
mance. Rather it is written in a way that makes the translation of the HRG explicit. For each
nonterminal edge label / we have defined a parser function that takes a tuple of nodes (nj,...,n;)
as a parameter such that r = type(l). Several rhs of a production are handled using the oneOf

9/14 Volume 10 (2008)

Graph Parser Combinators Eﬁ

combinator. Terminal edges are matched and consumed using primitive parsers. Thereby their
proper embedding has to be ensured. We use the standard list operator (! !) to extract the node
visited via a particular tentacle from a node list ns.

For instance, stmt 3 represents the while-production. First, a “cond”-edge e visiting the nodes
n; and n; via the tentacles 0 and 1, respectively, is matched and consumed. Thereafter the body
of the loop is parsed, i.e., the stmt s starting at the node visited by tentacle 2 of e, i.e., ns ! !2,
ending again at n;. Finally the result is constructed and returned. If something goes wrong and
backtracking becomes necessary, previously consumed input is released automatically.

The parser is quite robust. For instance, redundant components are just ignored and both the
dangling and the identification condition are not enforced. These relaxations can be canceled
easily — the first one by adding the primitive parser eoi (end of input) to the end of the def-
inition of the top-level parser, the others by applying the combinators noDanglEdgeAt and
allDifferent, respectively, to the nodes involved.

Note, that the implementation of stmts follows a common pattern, i.e., a chain of graphs
between two given nodes. So using a combinator the parser declaration can be further simpli-
fied to stmts=chainlBetw stmt. Here, chainlBetw ensures at least one occurrence as
required by the language. Its signature is

chainlBetw:: ((Node,Node) ->Grappa a)—>(Node,Node) ->Grappa [a]

and it is defined exactly as stmt s except from the fact that it abstracts from the actual parser
for the partial graphs.

Performance

This parser is not very efficient. A major source of inefficiency is the use of aNode that binds a
yet unknown node arbitrarily thus causing a lot of backtracking. This expensive operation has to
be used only for the translation of those productions, where inner nodes within the rhs are not in-
cident to terminal edges visiting an external node, i.e., a node also occurring in the Ihs.> However,
even so there are several possibilities for improvement. For instance, we currently try to make
this search more targeted by the use of narrowing techniques as known from functional-logic pro-
gramming languages [Han(07]. Performance can be further improved if particular branches of the
search space can be cut. For instance, we can prevent backtracking by committing to a (partial)
result. In [MMO8] we have demonstrated how this can be done in our framework. Finally, we
can apply domain-specific techniques to further improve the performance. For instance, a basic
improvement would be to first decompose the given graph into connected components and apply
the parser to each of them successively. We provide the combinator connComp for this task.
However, this step can only be applied to certain languages and at the expense of readability.

So we can start with an easy to build and read parser for a broad range of languages. It may be
less efficient, however, it can be improved step by step if necessary. Further it can be integrated
and reused very flexibly, since it is a first-class object.

5 The function aNode can also be used to identify the start node in our introductory example abcG.

Proc. GT-VMT 2008 10/ 14

Eg ECEASST

6 Related Work

Our parser combinator framework basically is an adaptation of the PolyParse library [WalO7].
The main distinguishing characteristics of PolyParse are that backtracking is the default behavior
except where explicitly disallowed and that parsers can be written using monads. There is an
abundance of other parser combinator libraries besides PolyParse that we cannot discuss here.
However, a particularly interesting one is the UU parser combinator library of Utrecht University
[SA99]. It is highly sophisticated and powerful, but harder to learn for a user. Its key benefit is
its support for error correction. Hence a parser does not fail, but a sequence of correction steps
is constructed instead.

Approaches to parsing of particular, restricted kinds of graph grammar formalisms are also
related. For instance, in [SF04] an Earley parser for string generating graph languages has been
proposed. The diagram editor generator DiaGen [Min(02] incorporates an HRG parser that is an
adaptation of the algorithm of Cocke, Younger and Kasami. And the Visual Language Compiler-
Compiler VLCC [CLOT97] is based on the methodology of positional grammars that allows to
parse restricted kinds of flex grammars (which are essentially HRGs) even in linear time. These
approaches have in common that a restricted graph grammar formalism can be parsed efficiently.
However, they cannot be generalized straightforwardly to a broader range of languages like our
combinators.

We have demonstrated that semantics can be added very flexibly in our framework. The graph
transformation system AGG also provides a flexible attribution concept. Here, graphs can be at-
tributed by arbitrary Java objects [Tae03]. Rules can be attributed with Java expressions allowing
complex computations during the transformation process. AGG does not deal with hypergraphs.
However, it can deal with a broad range of graph grammars. These are given as so-called parse
grammars directly deconstructing the input graph. Critical pair analysis is used to organize re-
verse rule application.

In [RS95] a parsing algorithm for context-sensitive graph grammars with a top-down and a
bottom-up phase is discussed. Thereby first a set of eventually useful production applications
is constructed bottom-up. Thereafter viable derivations from this set are computed top-down.
Parser combinators generally follow a top-down approach, although in a graph setting bottom-
up elements are beneficial from a performance point of view.

Finally there are other approaches that aim at the combination of functional programming and
graph transformation. Schneider, for instance, currently prepares a textbook that provides an
implementation of the categorical approach to graph transformation with Haskell [Sch07]. Since
graphs are a category, a higher level of abstraction is used to implement graph transformation al-
gorithms. An even more general framework is provided in [KS00]. The benefit of their approach
is its generality since it just depends on categories with certain properties. However, up to now
parsing is not considered.

11/14 Volume 10 (2008)

Graph Parser Combinators Eﬁ

7 Concluding Remarks

In this paper we have discussed graph parser combinators, an extensible framework support-
ing the flexible construction of special-purpose graph parsers even for context-sensitive graph
grammars. It already provides combinators for the parsing of several frequently occurring graph
patterns. We even may end with a comprehensive collection of reusable parser components.

Parser combinators are best used to describe a language in an operational way. For instance,
we have provided a parser for the graph language a*b*ck as a toy example. Similar situations,
however, also appear in practical applications as, e.g., discussed in [K6rO8]. We further have
provided a schema for the straightforward translation of hyperedge replacement grammars into
parsers on top of our framework. We have demonstrated this using the language of flowgraphs
as an example. The resulting parser is not efficient. It is rather a proof of concept. Languages
like flowgraphs can be parsed very efficiently using a standard bottom-up parser. However, the
main benefit of our framework is that language-specific optimizations can be incorporated easily
in existing parsers, e.g., by providing additional information, using special-purpose combinators,
heuristics or even a bottom-up pass simplifying the graph.

Parsing generally is known to be an area functional languages excel in. In the context of string
parsing a broad range of different approaches have been discussed. However, in particular the
popular combinator approach has not been applied to graph parsing yet. With the implementation
of our library we have demonstrated that graph parser combinators are possible and beneficial
for the rapid development of special-purpose graph parsers.

Future work

Our approach is not restricted to functional languages though. For instance, in [ADO1] the trans-
lation of string parser combinators to the object-oriented programming language Java is de-
scribed. We plan to adapt this approach in the future to, e.g., integrate graph parser combinators
into the diagram editor generator DiaGen [Min02]. This hopefully will allow the convenient
description of even more visual languages.

The parsers presented in this paper suffer from the fact that purely functional languages are
not particularly dedicated to deal with incomplete information. For instance, we have discussed
why inner nodes occurring in the right-hand sides of productions have to be guessed. Multi-
paradigm declarative languages [Han07] like Curry [Han], or even logic libraries like [NARO7],
are well-suited for such kinds of problems. We currently reimplement our library in a functional-
logic style to overcome these limitations. This work will also clarify the relation to proof search
in linear logic [Gir87]. Here, the edges of a hypergraph can be mapped to facts that can be
connected to a parser via so-called linear implication (—o). During the proof the parser consumes
these facts and at the end none of them must be left.

We further plan to investigate error correction-strategies in a graph setting. For instance, in the
context of visual language editors based on graph grammars this would allow for powerful con-
tent assist. Whereas in a string setting error-correcting parser combinators are well-understood
already [SA99], not much has been done with respect to graphs yet. Admittedly, we do not ex-
pect to find an efficient solution to the problem at large. With certain restrictions some kinds of
corrections might be possible though.

Proc. GT-VMT 2008 12/14

E

ECEASST

Bibliography

[ADO1]

[CHZ95]

[CLOT97]

[DHK97]

[ErwO1]

[Gir87]

[Han]

[HanO07]

[HM96]

[Hug89]

[Joh75]

[Kas65]

[Kor08]

[KSO00]

D. S. S. Atze Dijkstra. Lazy Functional Parser Combinators in Java. Technical re-
port UU-CS-2001-18, Department of Information and Computing Sciences, Utrecht
University, 2001.

W. Citrin, R. Hall, B. Zorn. Programming with Visual Expressions. In Haarslev
(ed.), Proc. 11th IEEE Symp. Vis. Lang. Pp. 294-301. IEEE Computer Soc. Press,
5-9 1995.

G. Costagliola, A. D. Lucia, S. Orefice, G. Tortora. A Parsing Methodology for the
Implementation of Visual Systems. IEEE Trans. Softw. Eng. 23(12):777-799, 1997.

F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Replacement Graph Grammars. In
Rozenberg (ed.), Handbook of Graph Grammars and Computing by Graph Trans-
Sformation. Vol. I: Foundations. Chapter 2, pp. 95-162. World Scientific, 1997.

M. Erwig. Inductive graphs and functional graph algorithms. J. Funct. Program.
11(5):467-492, 2001.

J.-Y. Girard. Linear Logic. Theoretical Computer Science 50:1-102, 1987.

Hanus, M. (ed.). Curry: An Integrated Functional Logic Language. Available at
http://www.informatik.uni-kiel.de/ curry/.

M. Hanus. Multi-paradigm Declarative Languages. In Proc. of the Intl. Conference
on Logic Programming (ICLP 2007). Pp. 45-75. Springer, 2007.

G. Hutton, E. Meijer. Monadic Parser Combinators. Technical report NOTTCS-TR-
96-4, Department of Computer Science, University of Nottingham, 1996.

J. Hughes. Why functional programming matters. Comput. J. 32(2):98-107, 1989.

S. C. Johnson. Yacc: Yet Another Compiler Compiler. Technical report 32, Bell
Laboratories, Murray Hill, New Jersey, 1975.

T. Kasami. An efficient recognition and syntax analysis algorithm for context free
languages. Scientific report AF CRL-65-758, Air Force Cambridge Research Labo-
ratory, Bedford, Massachussetts, 1965.

A. Kortgen. Modeling Successively Connected Repetitive Subgraphs. In Proc. of the
3rd Intl. Workshop on Applications of Graph Transformation with Industrial Rele-
vance (AGTIVE’07). LNCS. Springer, 2008.

W. Kahl, G. Schmidt. Exploring (finite) Relation Algebras using Tools written in
Haskell. Technical report 2000-02, Fakultit fiir Informatik, Universitdt der Bun-
deswehr, Miinchen, 2000.

13/14

Volume 10 (2008)

Graph Parser Combinators Eﬁ

[Lau89] C. Lautemann. The Complexity of Graph Languages Generated by Hyperedge Re-
placement. Acta Inf. 27(5):399-421, 1989.

[Min02] M. Minas. Concepts and Realization of a Diagram Editor Generator Based on Hy-
pergraph Transformation. Science of Computer Programming 44(2):157-180, 2002.

[MMO8] S. Mazanek, M. Minas. Graph Parser Combinators. In Proc. of the 19th Intl. Sym-
posium on the Implementation and Application of Functional Languages. LNCS.
Springer, 2008.

[NARO7] M. Naylor, E. Axelsson, C. Runciman. A functional-logic library for wired. In Proc.
of the ACM SIGPLAN workshop on Haskell. Pp. 37-48. ACM, 2007.

[PeyO3] S. Peyton Jones. Haskell 98 Language and Libraries. The Revised Report. Cam-
bridge University Press, 2003.

[RS95] J. Rekers, A. Schiirr. A parsing algorithm for context sensitive graph grammars.
Technical report 95-05, Leiden University, 1995.

[SA99] S. D. Swierstra, P. R. Azero Alcocer. Fast, Error Correcting Parser Combinators: a
Short Tutorial. In Pavelka et al. (eds.), 26th Seminar on Current Trends in Theory
and Practice of Inform. LNCS 1725, pp. 111-129. 1999.

[Sch07] H. J. Schneider. Graph Transformations - An Introduction to the Categorical Ap-
proach. 2007. http://www2.cs.fau.de/ schneide/gtbook/.

[SFO4] S. Seifert, I. Fischer. Parsing String Generating Hypergraph Grammars. In Ehrig et al.
(eds.), Graph Transformations. LNCS 3256, pp. 352-367. Springer, 2004.

[Tae03] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Valida-
tion of Software. In Pfaltz et al. (eds.), AGTIVE. LNCS 3062, pp. 446—453. Springer,
2003.

[Wal07] M. Wallace. PolyParse. 2007. http://www.cs.york.ac.uk/fp/polyparse/.

Proc. GT-VMT 2008 14 /14

	Introduction
	Parser Combinators
	Graphs
	Parsing Graphs with Combinators
	Graph Grammars and Parsers
	The Combinator Library

	Parsing Flowgraphs
	Related Work
	Concluding Remarks

