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       Dept. of Comp. Sc. | Univ. of Pretoria | 0002 Pretoria | South-Africa | sgruner@cs.up.ac.za 
 

Abstract: A triangulated network of mobile units is modelled by means of a graph trans-
formation system in which graph nodes are labelled with geometric coordinates and edges 
are labelled with distances. Nodes represent mobile units and edges represent wireless 
radio communication links between them. Under concurrency the model can describe 
interesting practical scenarios, for example swarms of taxis in an urban environment. The 
contribution features the enhancement of a graph transformation system by trigonometric 
calculations. By the way it is also shown that the classical “negative edge condition” has 
only limited applicability if a strict locality principle is assumed, and –vice versa– that  
there are reasonable modeling cases in which this locality principle itself fails to suffice. 
This article is a revised version of [Gru08]. 
 
Keywords: Attributed Graph Transformation, Mobile Network, Concurrency, Locality. 
 
 

1 Scenario 

 
Figure 1: Triangulated network before (top) and after (bottom) the movement of some nodes. 
Dark shaded nodes have changed their positions, and some communication links have also 
been reconfigured in their topological positions, which is depicted  by thicker lines. 
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Imagine an inner-city scenario in which a swarm of independent yet cooperating taxis keep 
each other informed about sources of customers to be picked up, traffic jams in the streets, etc. 
Every taxi is equipped with a simplistic communication device to keep in contact with a small 
number of other units in a not-too-far distance. To avoid confusion between the units, two 
locality constraints are imposed on every unit: 

• The number N of communication partners to each unit is limited. 
• The communication distance D between each unit is limited, too. 

The network is self-organizing (e.g. like a swarm of fish), thus not controlled by any central 
agency. Furthermore, the network structure shall be triangulated (as further defined below), 
such that: 

• It has a well-manageable regular internal structure, as depicted in Figure 1, whereby: 
• Configurations can be simply (re)-calculated with the usual formulae of trigonometry. 

 
In the following sections of this article a simple yet effective graph transformation model to 
such a self-organizing mobile network is developed. The underlying graph transformation 
techniques themselves being rather “classical” (except of a new interpretation of the “negative 
edge” condition) the value of this study is to be found in its general and uniform representation 
of a practically relevant scenario – enabling simulative experiments to study the behaviour of 
such systems, locally and globally, under various settings of its key parameters. 

2 Technical Preliminaries 
The graph transformation paradigm used in this article combines the PROGRES system’s 
syntax [SWZ99] and denotational semantics [Sch96] of program-embedded attributed graph 
transformation with the VISIDIA system’s message-passing operational semantics [BGM01] 
[LMS95] as follows: 

• Edges in the left-hand-side of a graph transformation rule represent communication 
link between two units, whereby the liveness of such links must be acknowledged by 
means of message-passing between the connected units. 

• The non-existence of an edge between two units u and u’ (negative edge condition) 
can thus only be recognized indirectly via a third unit u” to which both u and u’ are 
linked. Any rule with a left-hand-side combining only u and u’ with a “negative edge” 
(which would be perfectly legal in PROGRES with its “omnivident” global viewpoint) 
is thus meaningless under this strictly local operational perspective. 

• An edge decorated with an explicit edge-attribute e indicates that some information e 
is (or can be) shared between the two adjacent nodes by means of message-passing as 
described above. Edge-attributes are only “syntactic sugar” for the sake of legibility of 
the model specification – in the terminology of PROGRES: “derived” (not “intrinsic”). 

• The operational semantics (implementation) of an edge between an ordinary node u 
and a multi-node u* (which represents a finite set of nodes in the neighbourhood of u) 
requires star-synchronisation under mutual exclusion, as explained in [BGM01]. 

• Where mutual exclusion is not locally required, arbitrarily many transformation rules 
may be applied across the network graph at any time, in any paradigm of concurrency; 
see for example [LMS99]. 

• Isomorphisms are generally used to map the transformation rules’ left-hand-sides into 
the model graph for application – with special treatment of the multi-nodes [SWZ99]. 
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The triangulation property of the network graphs in this article is defined as follows: A ring of 
size r is a graph with r nodes {V0,…Vr–1} and r edges {E0,… Er–1} such that for all 0� i < r : 
Ei = (Vi, Vi+1 mod r) and no further edges exist between those nodes than just these ones. Then a 
planar graph is called triangulated if all its ring-shaped sub-graphs are of size r = 3. Thereby it 
is not required that all possibilities of triangle-building are fully exhausted: As it can be seen in 
Figure 1, there might be “incomplete” triangle subgraphs {Vx, Vy, Vz} with edges (Vx, Vy) and 
(Vy, Vz) but no ring-closing edge (Vz, Vx). 

3 Model Specification 
In terms of modelling and simulation theory [Van08] the approach of this work belongs to the 
type “discrete approximation of continuous reality”, because an attributed graph replacement 
system (of discrete character) is used to model the smooth movements of physical entities, as 
outlined in the introductory section. In this context the terms “attribute” (from the PROGRES 
terminology) and “label” (from the VISIDIA terminology) are synonyms. In the model of this 
scenario, nodes and edges of the network graph are labelled as follows: 

• An edge can carry a variable label D, representing a geometric distance between two 
nodes (in whatever vector-space, naïvely two-dimensional Euclidean). Also remember 
what has generally been said about edge labels in the previous section. 

• Nodes carry several labels of the following kind: 
o C is a vector-type label representing the coordinates (position) of the node in 

the chosen vector-space (environment). 
o A or P are auxiliary labels (modelling artefacts without a corresponding 

property in the modelled world), used for the treatment of concurrency and 
mutual exclusion as further explained below. 

o A label OFF is used to model defective nodes (units) which cannot 
communicate. In the absence of this label the unit is assumed to be operative; 
nodes with edges cannot be OFF. 

o A label NEW can be used to signify previously non-existing units which have 
just arrived in the operational terrain covered by the network, or also to signify 
the recovery of a previously defective node. New nodes cannot be connected 
immediately – in other words: nodes with edges cannot be of type NEW. 

 
Consequently, the graph transformation rules of the model are labelled as well. However, there 
are also generic rules in which some of the labels (node labels or edge labels) are omitted. This 
means that such a rule can be applied without taking the instance-value of the omitted label 
into account. For example, if a graph transformation rule depicts an edge without edge label D 
then this edge could be mapped to any edge in the model graph. Thus, the model is based on a 
simple hierarchic type system, with ANY being the only super-type to all the other concrete 
types and no intermediate types in between. Omission of a type is regarded as equivalent to the 
explicit labelling of the according entity with the ANY symbol – see [Sch97] for comparison. 
 
3.1 Locally Mutual Exclusion of Activities 
  
The first rule of the model checks if a node, which intends to change its geographic position, is 
free to do so. If this is the case, it takes a token which prevents any immediate neighbour from 
becoming active as well. 
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Figure 2: Rule which explicitly models mutual exclusion of activities in a neighbourhood. The 
passive centre node of a star may pick an activity-token if all its neighbours are passive too. 
An operational semantics like the one implemented in the VISIDIA system guarantees that this 
rule itself is not multiply applied in the same local neighbourhood at the same time, which 
prevents two adjacent nodes from taking the activity token A simultaneously. 
 
As usual it is assumed that the choice of an anchor-place for rule application is made non-
deterministically (at random). In Figure 2 this rule is depicted. It tells us that a node can pick 
an activity token (for mutual exclusion in the local neighbourhood) if this node itself as well as 
all its adjacent nodes are currently passive. As mentioned above, the model rules shall be 
denotationally interpreted like in PROGRES, whereby an additional star symbol (*) is used 
here as “lexical sugar” to emphasize the mapping of a multi-node to the entire neighbourhood 
(star) of a central node (here: node 1). Moreover it must be kept in mind how two overlapping 
rule-applications in the same local neighbourhood are prevented by the operational semantics 
of the VISIDIA system [BGM01][LMS99], due to which it can never happen that two adjacent 
units find themselves both in an active state A at the very same time. This means that 
simultaneous activities of two immediately adjacent units in the scenario are modelled via 
pseudo-simultaneous interleaving of mutually exclusive actions in rapid pace. Local mutual 
exclusion is thus treated at two different levels: explicitly in the model specification by means 
of the A and P labels, and implicitly by VISIDIA operational rule-application semantics 
(message exchange along the communication channels). In non-overlapping (remote) regions 
of the model graph, however, a rule may well be multiply applied, at the same time, in genuine 
non-interleaving concurrency. Technically speaking this explicit modelling of local mutual 
exclusion would not be necessary; the implicit star-synchronisation of a VISIDIA kind of 
operational semantics would suffice. Nevertheless the explicit exclusion model with labels A 
and P was chosen for the sake of conceptual clarity.  
 
Note that mutual exclusion could theoretically lead to deadlock. In [LET08] Lambers, Ehrig 
and Taentzer have studied the rule applicability problem in the presence of mutual exclusion 
from a theoretical perspective, thereby aiming at predicting (a-priori) which rule application 
sequences may or may not be possible. Basically the same problem is addressed by Biermann 
and Modica for yet another network class [BMo08]. However, the emphasis of my work (as 
further described in section 5) is on experiment and observation, which means that theoretical 
(predictive) system analysis is not in the scope of this article any more. 
 
3.2 Movement of Units 
 
After a node has acquired activity-status (see above) it can change its location according to the 
mobile unit scenario. This is modelled with node labels representing coordinates in the chosen 
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Figure 3: Movement rule. The distance is calculated by an imported function, according to the 
PROGRES system. Thereafter the active node gives up its mutual exclusion token and returns 
into a passive state. 
 
vector space. “Motion” is thus nothing but node relabelling, interpreted in terms of the chosen 
domain.  When a node has been “moved” (by relabelling), two further actions must take place: 

• The adjacent edges, labelled with the distances between the active node and its passive 
neighbour nodes, must also get relabelled to correctly represent the new geographic 
configuration. 

• Then, the active node must release its exclusion label A and return to a passive state P. 
 
As shown in Figure 3, all these actions can be expressed in one graph transformation rule. For 
the recalculation of positions and distances, the graph grammar system is augmented with a 
simple trigonometric calculus which must be executed while the graph grammar rules are 
applied. The authors of PROGRES system have demonstrated how this can be done [SWZ99].   
 
Note that the movement of a node can temporarily destroy the desired triangulation property of 
the underlying network. For reasons of model simplicity (which means: a small number of 
small rules) it has been decided to temporarily concede the violation of this global topologic 
network property and to fix any violation with an equally simple set of repair-rules, rather than 
trying to design a complicated graph transformation system with large (non-local) rules for the 
sake of avoiding the violation of the triangulation property in the first place. (The repair-rules 
will be shown in the subsequent section.) Moreover, the usage of large (non-local) rules would 
undermine the concept of a self-organizing network which is not controlled by a central 
agency. Small (local) rules, on the other hand, can be easily applied by the network nodes 
themselves as described in the literature to the concurrent graph relabeling paradigm [LMS99]. 
 
3.3 Communication Breakdown 
 
In the mobile unit scenario it should be realistically assumed that communication can break 
down from time to time (which can also result in a temporary violation of the triangulation 
property and will also be treated by repair-rules as described in the subsequent section). In this 
article any instance of a communication breakdown has one of the following three reasons; 
(see Future Work section below for further considerations): 

• Communication breakdown because a unit cannot cope with too large numbers of 
communication partners any more; (the connectivity degrees of network nodes are 
assumed to be limited); 
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Figure 4: Transformation rule describing a communication breakdown due to internal defect. 
 

 
Figure 5: Rule describing a communication breakdown due to long distance (weak signal). 
 

 
Figure 6: Too many communication partners: the most remote one is abandoned. Classical 
graph transformation systems, without counting features, cannot process such kind of rules. 
 

• Communication breakdown due to too far distance between the communicating units; 
• Communication breakdown due to a unit-internal technical defect. 

 
For all these cases, model rules are provided as shown above. The activity status (A or P) of 
the nodes involved is irrelevant here, because the activity status is only a model artefact by 
means of which simultaneous movements of adjacent nodes are simulated (through small-step 
interleaving under mutual exclusion). Where motion is not involved at all, explicit distinction 
between A-nodes and P-nodes is obsolete as well. 
 
As far as Figure 6 is concerned one might ask the question how a unit (here: 1) can have more 
than the maximal number of communication partners in the first place. The answer is found in 
the dynamic and self-optimizing nature of the system to be modelled: Temporary violations of 
global “invariant” properties (here: the maximal degree of connectivity) are admitted for a 
short period of time, such that (for example) a better communication link can be established 
before a worse one is given up. 
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Figure 7: A defective unit gets repaired. (It is as if a new unit would appear in the landscape.) 
 
This issue will become clearer in the subsequent paragraphs, where the reparation of violated 
triangulations and the establishment of new communication links are modeled.  
 
Also note that the rule depicted in Figure 6 requires a graph transformation paradigm which 
allows for counting the magnitude |N| of the neighbourhood of a centre node, which means 
that neither the classical PROGRES system [SWZ99] nor the classical VISIDIA system 
[BGM01] can be used to implement this crucial rule.  
 
In this sub-section in only remains to be said that a defective (thus: isolated) node must be able 
to get back into operational mode, as a precondition to the re-establishment of its participation 
in the communicative network. This is modelled by the rather trivial rule depicted in Figure 7. 
 
3.4 Reparation of Locally-Temporarily Violated Network Invariants  
 

 
Figure 8: Scenario in which the triangulation property is violated after a far-reaching move of 
unit 1 (see red line). The edges between units 1 and 2, respectively units 1 and 3, are now 
crossing the edge between units 4 and 5, such that this sub-graph is not planar any more. 
 
The scenario model is generally assumed to possess a number of global invariants, such as the 
triangulated structure of the network graph, the maximal communication distance between two 
units, or the maximal degree of connectivity (number of communication partners) throughout 
the network. On the other hand it has already been mentioned that the dynamic character of the 
scenario will locally lead to violations of those invariants for short periods of time,* until some 
repair-mechanisms restore the desired homogeneity of the model graph. These mechanisms are 
modelled explicitly (as part of the scenario specification) in the following paragraphs. 
                                                      
* An analogy in the physical nature can be found in the realm of quantum physics, whereby spontaneous 
appearances of short-lived virtual particles can temporarily violate the macro-law of energy preservation 
for a short period of time in a small area of space. 
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Figure 9: Continuation of the scenario of Figure 8. In a first step (left) the conflicting links 
are deleted (see dotted lines). Thereafter (right), new links must be established elsewhere to re-
establish the desired triangulation property (see thick blue lines). 
 
Consider the following situation depicted in Figure 8, in which some unit makes a move over 
some longer distance (by means of the motion rule of Figure 3) which leads to a local violation 
of the desired triangulation property. The strategy dealing with such situations consists of two 
subsequent steps: 

• One of two edges which are “crossing” each other –which can only be described in 
terms of the vector-space geometry functions with which the graph transformation 
system is augmented– will be deleted; for the purpose of network optimization this is 
typically the longer link (with a greater distance label D). 

• If such a deletion leads to a subsequent destruction of the network’s triangulation 
property elsewhere, new communication links must be established at those locations, 
as it is sketched in Figure 9. 

 
In the following, the graph transformation rules are shown by means of which scenarios like 
the one sketched  in Figure 8 and Figure 9 can be effectively modelled. Note that this is the 
point of the specification at which the most complicated calculations in terms of the underlying 
geometry must be imported (in PROGRES style) into a graph transformation rule in order to 
confirm the existence of a cut-point between two finite lines in the underlying vector-space. 
 
In Figure 10 as well as in Figure 11 the “violated” triangle is formed by the nodes 1, 2 and 3. 
Note that the edges between nodes 1 and 2, respectively between 1 and 3, are not redundant for 
the detection of the cross-point, because these edges represent communication links: Node 1 is 
the central unit in this scenario, which detects the cross-point between line D and line D’ by 
communication with its neighbours 2 and 3. A rule designed like the ones in Figure 10 and 
Figure 11, but without the edges between nodes 1 and 2, respectively 1 and 3, would imply the 
global (omnivident, communication-less) perspective of a classical graph transformation 
system such as PROGRES [SWZ99] – in contradiction to VISIDIA’s operational semantics of 
locality and message-passing [BGM01] [LMS99], to which the model of this work adheres. In 
this paradigm the left-hand-side of a rule with such a purpose can only be a connected graph.  
 
Also note that node 4 of Figure 10 could possibly remain isolated after the according rule has 
been applied – ditto for the rules depicted in Figure 5 and Figure 6. In such a case the isolated 
node would assume a NEW state, like the one which is depicted in Figure 7.  
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Figure 10: Graph rule describing the detection and deletion of a conflicting network link. 
 
The according graph transformation rule is not depicted in this work for reason of triviality: 
every unit knows intuitively (by itself) when it does not have any communication partners, 
thus when to relabel itself to NEW. 
 
Further note that the rules of Figure 10 and Figure 11 together ensure local optimization by 
determining the longer link to be deleted and the shorter link to remain. It is obvious that two 
rules are needed for this optimization purpose: one for the case that D > D’, and one for the 
case that D � D’.  
 

 
Figure 11: Ditto, this time with the other one of the two conflicting links being deleted. 
 
These rules are designed as ordinary rules (not as a “star-rules”) such that only one edge in a 
conflict situation is deleted per rule application. This design option has been chosen in order to 
keep the amount of destruction within a region of the model graph as small as possible (thus 
also the amount of required restaurations) for conservative reasons. 
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Figure 12: Rule modeling a new unit receiving a radio signal and establishing a network link 
with its hitherto unknown newly found communication partner. No VISIDIA-semantics here! 
 
In case that more than one conflicting edge must be destroyed these rules can be applied 
repeatedly, until all conflicts are resolved. 
 
After an edge has been deleted as shown above, or after a defective unit has come back into 
operation mode, there are opportunities for the (re)-establishment of communication links for 
the sake of the already mentioned global triangulation property. In the case of a new node, 
which has per der definitionem no communication links (and therefore no knowledge about the 
existence of any other units) the new node cannot do anything but wait and listen until it 
receives a signal from another, hitherto unknown nearby unit. A communication link between 
these two units is then formally established, and the now connected node looses its NEW 
status, as depicted in Figure 12. Per default the value of D must be smaller than maximum, 
otherwise no radio signal could have been received at all. Should the newly established link 
violate any of the already mentioned global network invariants then the repair-rules (Figure 6, 
Figure 10, Figure 11) would be in place again to rectify the temporary topological flaw in an 
optimizing manner. 
 
At this point it is interesting to note that the graph transformation rule of Figure 12 is the only 
rule of the scenario model which can not be explained in terms of VISIDIA’s message-passing 
semantics. Here, and only here, it is necessary to assume the “omnivident” perspective of the 
PROGRES paradigm. The reason is that, from a strictly local perspective, nodes 1 and 2 of 
Figure 12 cannot know anything about each other unless a communication link exists – which 
is however not the case in the left-hand-side of that rule. From a local perspective, the event of 
receiving a signal from a hitherto unknown unit comes as an unpredictable surprise to the 
receiving unit. It is not possible to verify the existence of the left-hand-side situation of Figure 
12 through message exchange, because any message exchange already implies the situation of 
the right-hand-side of Figure 12. When the software prototype to this scenario model is being 
implemented (see section: Future Work), this problem must be solved ad-hoc by means of data 
structures which do not correspond to the “pure” VISIDIA theory; (possibly: representation of 
a unit’s surrounding “landscape”, storing information about the presence of radio signals). 
 
In this context the questions was asked,† whether or not it would be a good idea to model 
broken communication lines as “virtual links” by means of a second type of edges, instead of 
radically destroying and re-creating edges as communication links in the physical world break 
down and are being re-established. It was conjectured that, by keeping such kind of “virtual 
links” between non-communicating (defective) units, the modeling of the entire scenario might  
                                                      
† See acknowledgments on the last page of this article. 
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Figure 13: Transformation rule describing the establishment of a new triangulation-link. 
 
become easier. However, scalability of the model could become problematic in such a setting, 
for the number of “virtual links” between all units could possibly grow in �(n2) where n is the 
total number of mobile units in the network.  
 
Moreover, the introduction of “virtual links” into the model’s data structures would not be of 
any help as far as the ad-hoc insertion of new units is concerned, which had never been 
members of the network before. In such a case, the “virtual link” technique would require the 
ad-hoc creation of n new “virtual links” (between the new unit and each of the already existing 
units), which would lead back to the very same problem (see Figure 12) that the absence of all 
communication lines cannot be detected by means of communication, yet communication is 
the very “semantics” of links in this approach.  
 
Furthermore it must be explained how new “triangle” configurations in the model graph can 
come into existence, as it is shown in Figure 13. Per default, the distance D (between the 
newly connected nodes 2 and 3) cannot exceed the maximum. The dotted and crossed-out line 
in the left-hand side of the rule depicted in Figure 13, which models the establishment of a new 
triangulation, represents a negative application condition known from graph transformation 
systems such as PROGRES [SWZ99]. In the model of this article (with its strict principle of 
locality in which the classical “omnividence” is no longer given), it must be explained how 
such an easily-drawn dotted line can be effectively implemented. This is done again by means 
of message passing (as explained in the Technical Preliminaries section above).  
 
Note that negative application conditions, respectively their operational semantics, continue to 
be problematic to various kinds of transformation theories; see for example [RKE08]. Only 
recently, for instance, were negative application conditions introduced to the algebraic graph 
transformation theory of re-configurable place-transition systems [RPL08].  
 
Last but not least it should be mentioned that also the application of the re-triangulation rule 
(Figure 13) could –obviously– lead to temporal violations of network invariants, but also in 
this case the already mentioned repair rules can be applied to fix the flaw. 
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3.5 Global Dynamics through Local Processes 
 
All graph transformation rules in the model –except the one of Figure 12– are designed in such 
a way that they can be applied and executed by the network nodes themselves (without any 
global super-instance) with the techniques of the concurrent relabeling paradigm [BGM01]. 
Obviously no neighbourhood (star) radius is greater than 1 in these rules, which makes their 
application (in terms of message exchange within a neighbourhood) especially easy. Indirect 
communication (of radius greater than 1 via router nodes) does not occur. The dynamics of the 
mobile network of communicating units as a whole is thus a result of the concurrent activities 
of the individual units within the network. The activity of each individual unit is a simple 
process, following a simple protocol, which comprises at least the following algorithmic steps 
(described in pseudo-code as follows): 
 

WHILE (operative) // process cycle for every unit 
   { 
     WHILE (repair_rule_applicable) {apply repair_rule};  // as often as possible 
                       IF (move_is_desired)          {apply move_rule}; // once per cycle 
                       IF (link_rule_applicable)    {apply link_rule}; // once per cycle 
   }; 
 
In this rule-application protocol, priority is given to the application of repair-rules to maintain 
the desired global topological network invariants as mentioned above. Alternative designs of 
the protocol could obviously lead to different global network behaviour, which would make up 
an interesting question for experimental studies; (see Future Work section below). 
 

4 Related Work 
There are many formalisms and approaches to the modelling of distributed systems as a whole 
or particular aspects thereof. 
 
As far as the domain of graph transformation is concerned (which was the theme of GT-VMT-
2008), a similar mobile network scenario and a similar modelling approach to it was recently 
published by Casteigts and Chaumette [CCh05]. It differers from the model presented in this 
article, as far as the embedding of geometric calculations for positions and distances into the 
transformation rules is concerned.  
 
Heckel and Guo described a layered graph transformation model of roaming cellphones being 
transferred from one base station to another one [HGu04]. Their scenario is thus similar to the 
scenario presented above (and also intended to be subject to simulative experiments), but 
geometric considerations such as network triangulation or distances between units do not play 
a role in their paper. Moreover, their model is developed in the classical “omnivident” 
paradigm, not in the paradigm of local communications.  
 
The short-paper [GHe04], published by the same authors, is basically an abstract summary of 
[Hgu04] but it provides a nice description of the typical characteristics and difficulties of 
distributed mobile systems as well as a nice discussion of broader related work. 
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Knirsch and Kreowski where amongst the first ones to model agent systems on a high level of 
abstraction [KKr00]. Their formalism and notation appears quite similar to the one of 
[LMS99] but remains rather vague as far as the issue of mobility is concerned.  
 
Chalopin, Godard, Métivier and Ossamy, on the other hand, have successfully modelled agent 
mobility on a given network in terms of graph relabelling with message-passing semantics 
[CGM06], however their graph model is static and does not allow for restructurings of the 
network itself.  
 
The Network Simulator tool, which can be found in the public domain,‡ is also meant for 
experiments and observation – though for different, more “classical” scenarios with less focus 
on geographic motion of mobile units. Moreover, graph transformation systems do not play a 
dominant role as background formalism to the implemenation of the Network Simulator tool.  
 

5 Future Work 
To date, none of the existing graph transformation software packages offers experimental 
simulation environments to such an extent that hundreds of nodes of pixel-size could be 
displayed in motion on a computer screen. So far, existing graph transformation software 
packages have put all emphazise on the visualisation of structural or topological properties of 
their model graphs, not on the visualisation of their geometric properties and node motion, as it 
would be required for the communicating mobile unit scenario described in this article.  
 
The implementation of such a software system is planned, whereby the graph transformation 
rules described in this article shall be hard-coded into the prototype for the sake of runtime 
speed. Once such a prototype would be available, the necessary empirical validation of the 
introduced concepts would be possible. Then it could be investigated through experimental 
observation and measurement, for example: 

• How frequently does the global network invariant (triangulation) get locally violated? 
• How quickly are those local violations being repaired? 
• How does the size of a neighbourhood (e.g.: maximally 5 communication partners or 

maximally 8 per unit) as well as the length of the maximal communication-distance 
influence the behaviour of the entire network as a swarm-like super-unit? 

• How smoothly does the network re-organize its structure when many nodes are on the 
move into different directions?  

• How would a different rule application protocol, individually executed by each unit, 
affect the behaviour of the network system as a whole? 

• (etc.) 
 
The model developed in this article is still quite simplistic as far as the physical properties of 
communication links are concerned. It has been simply assumed that the maximal distance of 
communication is a constant D for all units in the network. In reality one would have to deal 
with locally variable parameters �, depending (for example) on weather-conditions, objects 
obstructing the transmission of radio signals, etc. The graph transformation model of the 
                                                      
‡ http://nsnam.isi.edu/nsnam/index.php/User_Information 
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scenario would have to be amended accordingly – not so much in terms of the graphical 
rewrite-rules, but rather in terms of the functional calculations into which those rules have 
been embedded. 
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