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Abstract: AgriPoliS (Agricultural Policy Simulator) is an Agent-Based Model for
simulating the dynamic evolution of agricultural regions with a particular emphasis
on the structural transformations influenced by economical, ecological, and societal
factors. This study introduces a Reinforcement Learning (RL) framework to em-
power agents within AgriPoliS with strategic decision-making capabilities, specif-
ically in the context of land market bidding. Traditional agents within AgriPoliS
make decisions through Mixed Integer Programming (MIP) optimizations, inher-
ently limited by myopic considerations of the current year’s conditions. In this
framework one agent within AgriPoliS is defined as the RL agent, with AgriPo-
liS itself serving as the learning environment. Training results with policy gradi-
ent algorithms demonstrate that the RL-enhanced agent consistently outperforms
its non-learning counterparts, exhibiting strategically stable bidding behavior. To
assess the robustness of the algorithm, extensive training runs are conducted with
varying hyperparameters, including policy network initialization, learning rate, and
exploration noise level. Our findings underscore the efficacy of RL in enhancing
strategic decision-making in agricultural land markets, showcasing superior perfor-
mance compared to fixed bidding strategies.

Keywords: Deep Reinforcement Learning, Policy Gradient Algorithm, Agent-Based
Model, AgriPoliS, Message Queue

1 Introduction

With agricultural land being one of the most crucial components of ensuring food availability,
food access and food security, the importance of land markets cannot be overlooked. Land mar-
kets with special emphasis to land rental markets in the simplest terms allow the redistribution
of land assets from owners to land users who put the land to use, allow for consolidation of
land plots to larger plots which allows for achievement of economies of scale and thus higher
income for the land users [DSW01]. Land rental markets have a diverse effect on the structural
change within the agricultural sector by affecting farm entry, farm performance, farm growth
and ultimately the farm exits [KSB08, HOB13]. Owing to the importance of land rental mar-
kets, different regulations have been enacted and/or re-enacted to guide land market transactions
with multiple objectives such as prevention of transfer of agricultural land to non-agricultural in-
vestors, prevention of division of agricultural land into uneconomical sizes, capping land prices
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and in more recent years the agenda has shifted to climate change protection measures such as
bio-energy crops, reduction of carbon gas emissions [BGM+21, LB18, OH20].

Thus farmers’ participation in the agricultural land rental markets whether as land owners or
land bidders is greatly tied to their individual objectives and motivation. Farmers’ decisions
on the land rental market are influenced by their expectation of profits to be derived from the
plot of land, farms’ current capacities (livestock, machinery, stables etc.), transactional costs,
and the farmers’ risk taking or risk aversion behaviour. The decision also considers land spe-
cific characteristics such as soil quality, climatic productivity and the spatial location of the plot
[BDM22, Rah10]. There is therefore a crucial need for proper modelling of the complexity of
individual behaviour and individual interactions in land rental markets.

Agent-Based Models (ABMs) have gained a lot of traction in recent years from their “bottom-
up” modelling approach to capture emergent phenomena in complex systems in a way that tra-
ditional models could not. The individual entities in an ABM, referred to as “agents” are au-
tonomous, active and heterogeneous in their decision-making process. The agents are guided by
rules and heuristics in their quest to achieve goals and objectives [An12, Bon02, CH12, Eps99,
RG11]. ABMs have proven quite useful in their ability to capture individual behaviour in com-
plex systems. ABMs that embed agricultural land rental markets include AgriPoliS (Agricultural
Policy Simulator) for modelling the impact of various land regulations on the structure of agricul-
ture regions over time while accounting for interactions in the land market [HKB06, HAB19],
Pampas Agent-Based Model (PM) with an embedded Land Rental Market (LARMA) model
explores the dynamics of land use patterns in the Argentinean agricultural systems relying on
interactions between owners and tenants in the land rental market [BPR+11] and ABMSIM sim-
ulates the structural change in dairy farms with spatial explicit land rental auction market, milk
disposal markets [BW14].

Despite the usefulness of the ABMs, they mostly rely on traditional approaches where the
farm behaviour is motivated by myopic profit or utility maximizing behaviour. This ignores the
complexity of individual farm behaviour and the need for long term decision-making. Capital-
intensive investments and specific production decisions e.g. for perennial crops have implications
spanning over several years and thus should always be factored in current decision-making. De-
cisions are also mostly based on hard encoded rules and heuristics that should be followed by the
farms while ignoring the need for individual farm goals and plans [HKB06, HBB+18]. There
is therefore a need to improve modelling capabilities towards more strategic decision-making.
Complementing ABMs with Deep Reinforcement Learning (DRL) which combines Reinforce-
ment Learning (RL) with Deep Neural Networks (DNNs) has shown promise for modelling
flexible and adaptive agents. Those agents make their decisions not by given rules. Instead,
they interact with their environment and learn strategic behaviours and thus they could be con-
sidered as strategic agents [ZVC23, OVG+20]. DRL agents, while interacting with other agents
can figures out strategies that maximize their rewards while factoring in past experiences and
anticipating future experiences.

In this paper, we explore the methodological approach of integrating DRL in an ABM, AgriPo-
liS, where a single agent enhanced with DRL capabilities in their decision-making to facilitate
strategic behaviour and interactions in the land market. The paper is structured as follows: In sec-
tion 2, an overview of AgriPoliS including agents’ decision making and interaction is presented.
In section 3, the integration of DRL and AgriPoliS and the experimental setup is explained.
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In section 4, the training results are presented and followed by a discussion and conclusion in
section 5.

2 AgriPoliS

AgriPoliS (Agricultural Policy Simulator) is an ABM for simulating the development of agri-
cultural regions, focusing on the structural changes under economical, ecological and societal
factors [Bal97, HKB06]. The farms within the region are portrayed as independent farm agents
interacting with each other through various markets with particular emphasis on the land market.
Every farm is assumed to maximize profit for corporate farms or household income for family
farms through Mixed Integer Programming (MIP) linked to farm specific factor endowments
(land, labour, capital, stables, machinery, etc.), production alternatives, investment options and
external policy framework. After collecting data from the Farm Accountancy Data Network
(FADN) [EEM20] and Farm Structure Survey (FSS) [EE19], the farms are initialized based on
well calibrated empirical data on the aggregate regional capacities and indicators of individual
farms in the region.

2.1 Agents’ Decision Making

In AgriPoliS, farm agents have the freedom to decide between different production activities,
different investment options (e.g. new stables, machinery), whether to hire more labour or in the
case of family farm whether to look for off-farm employment. The farm agents also have the
freedom to decide on whether to borrow money or save money. Decisions in the current year are
based on their expectation of total income that might be accrued in the next year.

A typical simulation run begins by initializing the farms and subsequent simulations spanning
over a defined number of iterations where one iteration corresponds to one production year. For
each iteration, the farm agent presents their bid to the land market where farm plots are allocated
through competitive bidding where the highest bid wins the plot. This is followed by investment
decisions and after that the farms implement their production decisions. At the end of every
iteration, AgriPoliS calculates the individual agent’s indicators (updates of farm endowments,
production and financial status etc.) as well as aggregate indicators for the farm agents at the
regional level. Based on that, the farms calculate their expected income for the upcoming year
and decide whether continue or to exit farming. The process continues until the end of the
simulation run.

2.2 Interaction among Agents

Agents interact through the land market which is vital in AgriPoliS as farm growth is strongly
dependent on land. Farms in AgriPoliS grow predominately through renting additional land in
the land rental market in an iterative auction manner. The auction market is held at the start of
every iteration. Land becomes available for renting when existing rental contract are terminated
or when farms decide to exit farming. Each farm determines a valuable plot of land and calculates
a bid to present to the market. The bid is a function of the distance between the farmstead and
the plot of land measured in terms of the transport costs, the number of adjacent plots and lastly
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Figure 1: Reinforcement Learning framework with AgriPoliS

the agent’s estimated benefit of renting an additional plot. This is considering that plots close to
the farmstead and adjacent to other plots belonging to the farm are deemed more valuable. The
bid is calculated according to equation 1.

bid = (q−TC) ·β (1)

In this equation, q is the shadow price of the additional land (expected additional income to be
generated from this plot), and TC is the transport cost. The bidding parameter β reflects the
share of shadow price of additional land plot that is transferred to the land owner [Hap04]. The
remaining share 1−β of the shadow price is kept by the farm. On the other hand, research of
land price development [Gra18] found evidence for the need of price discrimination in regions
where spatial location plays a big role. This leads to a decrease in rental prices and therefore
to a reduction of the share of shadow prices that is transferred to the landowner. Based on
these considerations, β is set to 0.5 in AgriPoliS. The farm with the highest bid receives the
plot [KSB08]. Like with every other farm decision (investment, production, exit), the decision
on how much to bid is based on the current conditions and expectations only for the next year.
Farm agents’ decision-making is therefore highly myopic and does not consider any strategic
aspects of decision making, e.g. how their decisions in one iteration would affect future actions
in subsequent iterations.

3 DRL Meets AgriPoliS

In this section, a framework to integrate DRL and AgriPoliS is presented (Figure 1). The frame-
work is composed of three components. In the first component, the AgriPoliS is extended to also
function as the environment for the Reinforcement Learning (RL) [SB18], henceforth referred
to as APS-ENV. The second component is the Machine Learning Unit (MLU) which is respon-
sible for the training of the RL agent. The third component COM-MQ is necessary to provide
reliable communication between APS-ENV and MLU. COM-MQ is implemented with the mes-
sage queue system ZeroMQ to transport the messages from/to MLU and APS-ENV. Some of the
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messages are (de)serialized with protobuf. With COM-MQ in between, MLU and APS-ENV
are developed independently. Therefore MLU and APS-ENV can be implemented in different
programming languages, i.e. in Python and in C++ respectively. Principally they can be run even
in different machines with known IP addresses.

3.1 The Reinforcement Learning Problem

As the first step, only one agent in AgriPoliS is enhanced with RL while the other agents adopt
the standard AgriPoliS behaviour. The enhanced agent is referred here after as the DRL-agent.
As we are interested in the effects of the strategic bidding behaviour of the agent, β in equation 1
is designed as the action in a continuous action space. The state space consists of the properties
of the DRL-agent and the region under investigation, which include liquidity, current farm en-
dowment (stables and machines), the distribution of remaining contract duration for rented land,
prior rental rates, spatial distribution of free land plots in the region and the distribution of com-
peting agents in the neighborhood, as shown in Table 1. The state at the end of simulation run is
the terminal state. The equity capital of the agent is considered as the representative property for
the agent’s overall development. The equity capital of the DRL-agent is collected from the APS-
ENV for every simulation iteration. As the objective is to achieve strategic bidding behaviour
and at the same time have a sustainable farm growth for the DRL-agent (avoiding the risk of
illiquidity), the cumulative equity capital at the end of a simulation run is considered the reward,
which is defined as in equation 2 for the transition (s,a)→ s′, where ri is the equity capital in the
new state.

R(s,a,s′) =

 ∑
i

ri if s′ is terminal

0 otherwise
(2)

Using the state variables, the agent chooses the action (β ) and accordingly calculates the bid
( cf. equation 1) for the land market. Based on the success and/or failure of the bid the land
endowment is updated before the agent proceeds to make investment and production decisions
and obtains the results for this iteration. This continues until the end of the simulation run when
the cumulative equity capital is calculated.

3.2 The Algorithm

In Figure 1, the detailed processes in the three components in the framework are illustrated.
During the training, APS-ENV and MLU run independently, while interacting through sending
and receiving messages at certain points in time. As the action space is continuous, the learning
is approached through a deterministic policy gradient algorithm [LHP+15]. In this algorithm
only one policy network is used, in which the state (Table 1) is the input and the action (β )
is the output. Before the training cycles begin, the APS-ENV, the policy network and related
data structures, and the COM-MQ are initialized. Pseudocode 1 illustrates the initialization
process in detail while Table 2 gives a summary of the training hyperparameters. The learning
is iterative with a fixed number of epochs. In each epoch, it goes through three steps: training
data collection, network update and policy testing. To collect training data, the policy network

5 / 18



AgriPoliS DRL

Table 1: State variables for Reinforcement Learning

Name Type Level Notes
Terminating plots List of integers Farm Distribution of plot numbers over rest

contract length (1 to 5 years)
Liquidity Real Farm Ability of the farm to meet short term

liabilities
Farm age Integer Farm Age of the farm
Investments List of real Farm Remaining life of the investments
Previous rental rate Real Farm The latest amount of rent paid by the

agents. This is differentiated between
arable land and grassland

Management coefficient Real Farm This is reflecting the farms’ manage-
rial ability by manipulating the variable
costs.

Free plots Integer Region Number of available (remaining) free
plots in the region. This is differenti-
ated between arable land and grassland

Number of farms Integer Region Number of competing farms

Pseudocode 1 Initialization function in MLU
1: function INITIALIZATION(N, S, Y, ENV) ▷ ENV is an instance of APS-ENV
2: P.init() ▷ initialization of policy network P with arbitrary weights
3: PlayBuffer = [] ▷ the play buffer for training data
4: noise.reset() ▷ reset noise generator
5: num epochs = N ▷ number of epochs
6: num simulations = S ▷ number of simulations per epochs
7: num years = Y ▷ number of years for every simulation with AgriPoliS
8: best reward = 0 ▷ best episode reward
9: MQ.init(ENV) ▷ MQ is an instance of COM-MQ

10: end function
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Table 2: Training parameters for the Reinforcement Learning

Parameter Value Notes
N 1000 Number of epochs
S 30 Number of simulations (episodes) per epoch
Y 10 Number of years per simulation (episode)

N hidden 2 Number of hidden layers of policy network
S hidden 16 Size of hidden layers of policy network

LR 10−4 to 5 ·10−3 Learning rate for neural network
noise 0.4 to 0.01 Noise level for exploration

is used to obtain actions enhanced with noise to balance between exploration and exploitation.
Note that there are also “noises” in agriculture due to random events like weather conditions and
pests. They are partly implemented within AgriPoliS with different random number generators.
The noise in this work is a hyperparameter in RL. It is responsible for the exploration of the
policy space and is not used to simulate the randomness in agriculuture.

Since the DRL agent only get non-zero reward at terminal states, the simulations with AgriPo-
liS will not be stopped or interrupted and therefore they are rollout episodes with the same length,
i.e. the number of simulation years. The reward is given at the end of a simulation/episode as the
cumulative sum of the equity capital. The episodes are obtained by taking actions from the policy
network with noises. The noise is responsible for explorating the policy space. Such episodes
have different rewards. As the goal is to maximize the rewards, The state-action pairs (s,a) in
the episodes with largest rewards are put in a memory called play buffer which is updated only if
new episodes have larger rewards (line 7-8 in Pseudocode 3). The policy network is trained with
data taken from the play buffer.

The update of the policy network exploits supervised learning algorithms where states are the
inputs and actions from the play buffer are target values. Concretely, we use Mean Squared Error
(MSE) as the loss function and Adaptive Moment Estimation (ADAM) as the optimizer (cf. lines
13 in Pseudocode 3). After updating the policy network, the last step of an epoch is to test the
policy learned. This is a standard simulation run with AgriPoliS, obtaining the actions from the
updated policy network, but without additional noises. The learned behaviour can be seen in
the rewards of the testing runs of all the epochs. Interactions between MLU and APS-ENV, as
the lines 6, 11, and 12 in Pseudocode 2 show, are through the COM-MQ component. Basically,
the algorithm combines Monte Carlo Tree Search (MCTS) with supervised learning like in the
algorithm for AlphaGo [SHM+16]. Although here the search tree is not explicit but implicitly
saved in the play buffer.

3.3 Experimental Setup

As this work aims to investigate the feasibility of our approach, the investigated region only has
7 agents. They are typical farms from the region Altmark in Saxony-Anhalt, Germany. The
experiments were carried out on a workstation with a Nvidia GPU (Quadro RTX 6000).

To investigate the learning behaviour, especially the robustness of the algorithm, the training
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Pseudocode 2 Simulation function in MLU
1: function SIMULATION(test = False) ▷ Simulation with AgriPoliS
2: y = 0 ▷ current year
3: episode = []
4: R = 0
5: while y < num years do
6: state = MQ.get state()
7: action = P(state,w) ▷ action from policy network
8: if not test then
9: action += noise()

10: end if
11: MQsend action(action)
12: equity = MQ.get equity()
13: R = R + equity
14: if not test then
15: episode.append((state,action))
16: end if
17: y += 1
18: end while
19: return R
20: end function

Pseudocode 3 Training process in MLU
1: initialization(N, S, Y, ENV)
2: e = 0 ▷ current epoch
3: while e < num epochs do
4: s = 0 ▷ current simulation
5: while s < num simulations do
6: R = simulation()
7: if R > best reward then
8: PlayBuffer.update(episode)
9: end if

10: best reward = R
11: s += 1
12: end while
13: P.update() ▷ Learning with MSE loss function and ADAM
14: ▷ optimizer using training data from PlayBuffer
15: R = simulation(test = True) ▷ test the learned policy
16: e += 1
17: output(e, R) ▷ output the test run
18: end while
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Table 3: Chosen hyperparameters for the training

Initialization Learning Rate Noise

1 1 ·10−4 0.4
2 5 ·10−4 0.3
3 1 ·10−3 0.2
4 2 ·10−3 0.1
5 5 ·10−3 0.05

0.01

runs were carried out with systematical variations in hyperparameters. Note that the special
environment APS-ENV cannot be reset during the simulation. Further, the sequential nature
(land market interaction) of the AgriPoliS simulation constrains the training process, as it cannot
be divided into parallel processes. This means that the training process is time-intensive. For
the chosen number of epochs (1000) and number of simulations (30) per epoch, a training round
takes about 14.5 hours. Therefore only three hyperparameters were chosen for the systematic
investigation: learning rate, initialization of the policy network, and the noises added to action
values as they greatly influence the exploration, efficiency, stability and convergence of learning
in DRL. Table 3 shows the values of these parameters. The training is run by changing only one
parameter while the other two parameters are kept constant, i.e. the default values in table 2.

4 Training Results

In this section, the performance of our DRL approach is demonstrated. We analyze training
results with systematic variation of the hyperparameters according to Table 3. Further, we show
and discuss the potential application of Deep Deterministic Policy Gradient (DDPG) algorithm.

4.1 Cumulative Rewards

In the RL framework, although supervised learning was used, the values of the loss function
can not be used as an indicator of the learning quality, since the optimal cumulative reward
is unknown and the training data is dynamically updated. As cumulative reward is the object
function of the optimization problem with the learning algorithm, its dependence on the number
of epoch is adequate to evaluate the learning behaviour. Figure 2 shows results with variations
in the hyperparameters. In general, the framework is effective and the DRL-agent can achieve a
stable policy through learning. The impact of the different hyperparameters are detailed below:

Figure 2a shows the learning behaviour for the DRL agent with different initializations for the
policy network. The weights of the network are initialized randomly with different seeds. The
numbers 1 to 5 do not denote the values of the seeds but the sequence number of the training
experiments. The inset shows the curves of the first 200 epochs. From the curve, its clear that the
initialization has almost negligible effects on the learned policy, as the cumulative equity capital
stabilized at the same level after about 550 epochs. The curves coincide after about 120 epochs.

Figure 2b reflect the training curves with different learning rates (10−4, 5 · 10−4, 10−3, 2 ·
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10−3, 5 ·10−3). The curves coincide even earlier than with different initializations. As the inset
indicates, after only 40 epochs, the agent has already learned a stable strategy. At the early
learning phase, it is more stable if the learning rate is smaller. In terms of the cumulative equity
capital, the values were much lower in the first epochs as compared to the other hyperparameters
values (see Figure 2a and 2c). Note that the y-axes have different scales.

Figure 2c shows the influence of noise level on the learning behaviour. Noise is important
for the agent as it helps them to discover new actions that lead to better rewards. The value of
the noise level is the standard deviation of a normal distribution with the mean value 0. The
noise is added to the action value while training. As the learning rate is kept small (10−4),
the cumulative equity capital consistently rises over time . Although the training curves have
similar forms, the learned strategy stabilized at different levels. From the figure, it’s apparent
that learned strategies with noises larger than 0.1 are better than those with lower noises. As the
differences of these better strategies are marginal after epoch 500, even higher noise level will
not improve the learned strategy. In this figure, two additional lines are drawn for comparison.
The dashed line at the bottom indicates the cumulative equity capital of the agent in standard
AgriPoliS, while the solid line shows the cumulative equity capital for the agent with the optimal
fixed action value (β ). This is an optimized value for (β ) that leads to maximum cumulative
equity but remains constant over the entire simulation. After about 550 epochs, the solid line is
lower than four of the learning curves, which means that the DRL enhanced agent can get better
results than any fixed bidding strategy. The two curves below the solid line are those with the
smallest noises (0.05 and 0.01) and reflect that the agents are stuck at suboptimal strategies. This
demonstrates the importance of the exploration with noise.

4.2 Action Sequences from Learned Policies

Figure 3 shows the sequences of actions (variation of β over time) for the learned policies cor-
responding to the variation of hyperparameters in Figure 2. The first observation is, the action
sequences for all the strategies excluding the two with the smallest noise levels have similar
curves. For example, they have two peaks at iteration 2 and 6. Second, as the Figure 3b indi-
cates, the action sequences with different learning rates have larger variances, while resulting
in comparable rewards (cf. Figure 2b). The variance is especially large at the end of the sim-
ulations. This indicates the importance of actions in earlier iterations while the impact of the
actions in later iterations on the cumulative reward is relatively low. As the agent is reaching the
terminal state, the action has no more long term influence. Third, the two action sequences with
the lowest noise levels have very different characteristics than the other ones. As we know from
Figure 2c, these two strategies lead even to a lower reward than the optimal fixed action strategy.

4.3 Quality of the Learned Policies

In Figure 2 the training curves stabilize at the latest after 600 epochs. To analyze the quality
of the learned strategies, Figure 4 shows the average cumulative equity capital over the last 100
epochs with bars indicating the standard deviation. As the algorithm chooses the data from
the play buffer randomly, the variance of the strategies is expected. The qualities with different
initializations (Figure 4a) and different learning rates (Figure 4b) are good and comparable. From
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Figure 4b it seems the larger the learning rates the better the learned strategy. But this is only due
to the slower learning at lower learning rates. This observation therefore indicates that for some
hyperparameter settings the learned strategies can still be improved with more epochs. This is
confirmed by training with 3000 epochs, although the improvement is marginal. In Figure 4c,
the quality differences are obvious between the first four noises (0.4, 0.3, 0.2, 0.1) and the last
two (0.05, 0.01). The differences among the strategies with higher noises are marginal.

4.4 Experiments with DDPG

For RL with continuous action space, the Deep Deterministic Policy Gradient (DDPG) [SLH+14]
algorithm is successfully applied for several environments in the Gymnasium library [TTK+23].
It uses a value network to direct the learning process of the policy network. At first glance it
seemed suitable for our problem, taking the equity capital of every iteration (ri) as the reward
of every state transition. But the DDPG algorithm converged to very poor results. The reason
is, although the ri contribute to the reward, it cannot be considered itself as the reward for every
action. Nevertheless, the training with this algorithm has some interesting points. In Figure 5 we
show the typical training curve along with the first action value (β0) of the corresponding learned
policy.

The training curve is characterized with 4 phases separated by the epochs 600, 650 and 900. In
the first phase (from the beginning to epoch 600), although the cumulative equity capital keeps at
a constant low value, the policy network is actually updating, as the corresponding action values
indicate. The constancy of the cumulative equity capital with varying action values is due to
the characteristics of the auction process, as only a successful bid can influence the reward. In
the second phase (from epoch 600 to 650), the agent learns rapidly, obtaining the largest equity
value of e7,893,214. The action value grows correspondingly from a very low value to 0.628.
In the third phase (from epoch 650 to 900), the agent forgets progressively what it has learned
and the equity value reaches the minimum. Interestingly, the action value grows further to the
maximal value of 1.0. In the last phase (from epoch 900) the values do not change anymore. The
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thinking-learning-forgetting-sleeping pattern of the training curve comes from the structure of
the DDPG algorithm and the misinterpretation of the equity capital of every iteration as reward
of the action as the DDPG uses gradient ascent, which depends directly on the output of the value
network. By updating the value network, the target value v+ ri is always larger than v, therefore
larger action values are prioritized and the policy network will be updated to output larger action
values. This is a positive feedback cycle, which causes the steady growth of the action value.
But this steady growth is not related to any growth of the cumulative equity capital and therefore
does not lead to successful learning in our case.

5 Discussion and Conclusion

This study pioneers the integration of Deep Reinforcement Learning (DRL) into the Agent-
Based Model AgriPoliS, empowering agents with learning capabilities. That means that an
agent in AgriPoliS is enhanced with learning ability. By establishing the framework using the
three components Machine Learning Unit (MLU), communication unit COM-MQ and environ-
ment unit APS-ENV, ML algorithms are developed independently of AgriPoliS. Since the data
is (de)serialized and communicated through a reliable communication component, we have the
freedom to exploit the ML ecosystem of Python and especially PyTorch, while keeping AgriPo-
liS in C++.

The training results demonstrate the superiority of the DRL-enhanced agent over the standard
agent in AgriPoliS, reflected in the higher cumulative equity capital. Our analysis of hyperpa-
rameter variations reveals the critical influence of noise on the learning process, emphasizing the
necessity of providing sufficient exploration space for successful learning.

Although our study showcases the feasibility of our approach, certain limitations warrant con-
sideration. The deliberately small size of the simulated region, containing only seven agents,
restricts the generalizability of findings to larger, more complex agricultural landscapes. More-
over, the substantial training time, approximately 14.5 hours for 1000 epochs, poses a practical
challenge.The unique characteristics of the RL problem within AgriPoliS, including the inability
to reset the environment during learning, the fixed number of transitions from start to terminal
state, the definition of the state values and the rewards of transitions, present additional chal-
lenges. Notably, the absence of rewards for every action complicates the applicability of some
RL algorithms, e.g. DDPG. This problem has parallels to strategic games such as the game
Go, where rewards only accrue after a series of actions. The findings from our study therefore
apply primarily to problems characterized by delayed effects of strategic decisions and spatial
interactions, such as those involving competition for limited natural resources.

Building upon the insights gained from this study, future research endeavors aim to train agents
in more realistic agricultural regions, thereby enhancing the model’s applicability and relevance.
Furthermore, exploring the training of multiple DRL agents in complex landscapes presents an
exciting avenue for research, promising insights into the multifaceted economic, societal, and
environmental consequences of intelligent decision-making in agriculture.
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