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Abstract: Scientific software plays an increasingly important role in modern re-
search. Yet, the lack of software development training among researchers combined
with limited funding and recognition for software development often results in error-
prone and difficult-to-maintain code. Moreover, the often performance-critical na-
ture of scientific software adds additional complexity to the development and testing
process as researchers need to work with high-performance computing (HPC) sys-
tems. In this paper, we address the issue of integrating and reproducing workflows
on an HPC system by introducing a continuous integration (CI) workflow tailored
for HPC environments. Our workflow combines three tools to simplify the exe-
cution and validation of computational tasks on HPC systems: Singularity,
HPC-Rocket, and Fieldcompare. We leverage Singularity containers for
consistency across computing setups, then utilize HPC-Rocket to launch and mon-
itor a simulation on an HPC system from within a CI pipeline, and finally validate
the results using Fieldcompare to ensure reproducibility.

Keywords: RSE, FAIR, HPC, Singularity, MPI

1 Introduction

The importance of scientific software has grown significantly over the past years, as it has be-
come an essential part of many researchers’ daily work [BCH+17]. However, many researchers
lack training in software development, which can lead to poorly written code that is difficult
to maintain and prone to errors [Mer10]. Furthermore, research often receives limited funding
and recognition for software development, which can lead to a lack of investment in quality and
testing. Without a proper testing strategy, researchers often resort to a time-consuming manual
testing approach that is prone to human error. During manual testing, researchers may inadver-
tently deviate from their previous test configuration, overlook testing specific aspects of their
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workflow, or introduce errors in the test configuration. This leads to uncertainty about whether
previous computations can still be reproduced.

Automating scientific workflows can increase the chance of detecting human-introduced pro-
gramming or execution errors by performing repetitive and time-consuming tasks more accu-
rately and consistently than humans. This can reduce the time and effort required for testing and
deployment, and help to ensure that the software meets the required quality standards. Moreover,
automation enhances the reproducibility of scientific results by capturing all the necessary steps
to generate the results within a script, enabling easy repeatability of workflows.

In scientific research projects that demand significant computational resources, such as high-
performance clusters, the need for automation becomes even more crucial. The scale and com-
plexity of these projects often involve numerous repetitive and time-consuming configuration
tasks, that are susceptible to mistakes. Therefore, this poses a challenge for researchers re-
garding reliably performing computations and identifying software defects. There are several
workflow automation tools available that can help address these issues, however, most of them
have to be executed on the computing cluster directly. To receive continuous feedback about
the functionality of the application during development, these workflows should be executed for
every change to the application code. However, due to limited user permissions on the High-
Performance Computing (HPC) clusters, connecting them to a CI pipeline is often impossible.

In this paper, we focus particularly on automating computationally intensive workflows that
require the use of high-performance computers. We will introduce a continuous integration (CI)
workflow applicable to simple test cases as well as large-scale simulations to improve the re-
producibility of research software in the HPC context. Our workflow uses Singularity1

containers to encapsulate software and its dependencies, ensuring consistency across differ-
ent computing environments. We also present HPC-Rocket [ML23], which we developed
in our group to allow computations to be run on an HPC cluster from within CI pipelines,
allowing researchers to repeat their experiments on remote machines easily. Finally, we use
Fieldcompare [GKP+23], a regression testing tool for validating numerical simulation re-
sults against trusted reference data, to ensure that the results produced by our software are accu-
rate and reproducible.

2 Concept

We automate our workflow with the continuous integration service included with the GitLab plat-
form, GitLab CI. The term continuous integration refers to a development practice where soft-
ware engineers merge their latest changes into the main code branch in short intervals [DMG07].
In a typical CI configuration, a connected continuous integration service like GitLab CI will pick
up the new code version, compile it, and run tests against it. Therefore, continuous integration
serves as a feedback mechanism to ensure the correct functionality of the software. The continu-
ous integration service will execute a so-called pipeline, a sequence of tasks or jobs with several

1 Singularity has been split into a commercial product and a free version named Apptainer. Although not tested
specifically, we assume this workflow can be easily ported to Apptainer.
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individual steps, forming an automated workflow.

CI Platform

Computation Verify resultsBuild

copy image & 
run computation

HPC Cluster

collect 
results

Figure 1: Three main components of the continuous integration pipeline

Figure 1 describes the three main components of our proposed CI workflow. The whole work-
flow is divided into three successive stages. Our chosen CI Platform, GitLab CI, performs each
of these stages in isolated Docker environments. In the first stage, we build a container using
Singularity that includes all the necessary software and dependencies to run the computa-
tion. Containers provide a way to package and distribute software in a portable and reproducible
way, making it easier to run the computation on different machines and environments (Section 4).
Once the container is built, it can be deployed to a High-Performance Computing cluster using
HPC-Rocket (Section 5) that will submit the computation as a job to the Slurm scheduling
system and monitor its progress. Upon finishing the computation, HPC-Rocket collects the
produced data and copies it back to the CI pipeline, where it will be compared to a trusted refer-
ence data set or experimental measurements using Fieldcompare (Section 6).

3 Example Application

In the following, we will outline our proposed workflow using a simplified application written in
C++ for demonstration purposes. The program solves the Laplace equation in two dimensions
to calculate the heat transfer in a plate. To achieve this, a two-dimensional grid discretizes the
domain, and a finite-difference scheme is employed for the discretization of the Laplace equation
[ZC08], which yields the following discrete equation to be solved for each point (x,y) in the grid.

ut+∆t(x,y) =
ut(x+∆x,y)+ut(x−∆x,y)+ut(x,y+∆y)+ut(x,y−∆y)

4
To solve for the temperature distribution, we need to set boundary conditions, which specify a

constant temperature or a temperature gradient at the edges of the material. Once we have set the
boundary conditions, we can start iterating over the grid to calculate the temperature by updating
every grid point based on the values of its neighbors at the previous time step. This process is
repeated until the temperature values converge to a steady state (Figure 2).

3 / 16



A Continuous Integration Workflow for High-Performance Computing

Figure 2: Two-dimensional plate with a steady temperature distribution and constant boundary
condition values on the edges.

Parallelization

The finite difference scheme for two-dimensional heat transfer is parallelized by splitting the
grid into smaller subdomains and assigning each subdomain to a different processor or thread
(Figure 3). Once the grid is split, each processor can independently compute the temperature
values in its assigned subdomain using the finite difference scheme. However, communication is
required between neighboring processors to compute the values at the boundary between subdo-
mains. This is realized using the Message Passing Interface (MPI).

Figure 3: Partitioning of the grid into four sub-grids. Each sub-grid is assigned to a single MPI
Process. Information is shared across process boundaries to the cells marked in red.

The following code snippet illustrates the general structure of the application. First, the grid
and boundary conditions are initialized. Then, a loop runs until a steady temperature field is
reached. Each loop run corresponds to a time step, where the data is exchanged at the edges of
the grid using MPI, and the actual calculation of the finite difference scheme happens.
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initialize_grid()
apply_boundary_conditions()

while(not_steady) {
exchange_data_using_mpi()
calculate_grid()

}

The computational simulation of heat transfer is a suitable candidate to demonstrate our work-
flow, as it involves solving a simple differential equation that allows us to leverage the capabilities
of HPC clusters due to its parallelizable nature.

4 Virtualisation with Singularity

Containers are a virtualization technique allowing the provision of encapsulated runtime envi-
ronments [Ber14]. We chose the container technology Singularity to package our software
together with all its dependencies [KG17] [KcB+21]. This allows us to circumvent a common
problem with the usage of HPC systems. Namely, the users usually lack permission to install
additional software on the HPC system themselves. Containers solve this issue by providing
a pre-built environment containing libraries and configurations the user needs to execute their
application. Unlike virtual machines, containers share the operating system kernel with the host
machine, making them a lightweight solution with less performance overhead. Singularity,
in particular, was designed specifically for scientific and high-performance computing. It is
therefore able to easily utilize HPC-specific software and hardware components like MPI or
GPUs.

To create our container, we use a multi-stage build process (Figure 4), with separate build
and runtime stages. We install all the necessary dependencies to compile the application in the
build stage. The runtime stage only includes the dependencies required to run the software. By
excluding the build tools we ensure that the container is as lightweight as possible while still
containing all the necessary components for accurate and reliable results.

rockylinux:9

binary

runtime
dependencies

runtime
rockylinux:9

build tools

build

source files

Figure 4: Multistage build process in Singularity
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MPI Integration

When it comes to integrating with MPI, two different approaches can be applied (Figure 5)
[App]. The first approach is the “Hybrid Model” in which MPI is installed in both the container
and the host system. When launched, the host’s MPI instance will communicate with the MPI
installation inside the container.

The second approach is the “Bind Model” in which the host’s MPI installation is mounted into
the container. The latter approach is more performant as there is less communication overhead.
However, the solution is less portable and, therefore, makes it harder to reproduce results as the
container is not executable on its own anymore due to the lack of MPI installation.

Host

MPI

Singularity Container

MPI App

Host

Singularity Container

MPI App

Hybrid Bind

Figure 5: Comparison of the Singularity Hybrid- and Bind-Model

Container definition

In the following, we demonstrate the definition file for a Singularity container using the
MPI Bind Model. The definition specifies two stages, build and runtime, with the base image
rockylinux, which was used due to being the unofficial successor to the discontinued CentOS that
runs on the HPC cluster used for testing. In the first section, build, we use the %files section to
copy the source files of the example C++ application to the container file system. The following
%post section installs the build dependencies and compiles the application in a build directory.

BootStrap: docker
From: rockylinux:9
Stage: build

%files
laplace2d/src src
laplace2d/CMakeLists.txt CMakeLists.txt

%post
yum update -y && \
yum group install -y "Development Tools" && \
yum install -y mpich mpich-devel cmake && \
source /etc/profile.d/modules.sh && module load mpi && \
mkdir build && cd build && cmake .. && make
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In the runtime stage, we first copy the build directory from the previous stage. The %post
section then installs the runtime dependencies for the application. Note that we do not install
MPI during this step, as we are using the bind-model for this container. The %environment
section adjusts the PATH and LD LIBRARY PATH environment variables so that the mounted
MPI from the host system can be found when executing the container. Finally, the %apprun
section specifies the application to be launched.

BootStrap: docker
From: rockylinux:9
Stage: runtime
%files from build

build build

%post
yum update -y && \
yum install -y gcc-toolset-12 compat-libgfortran-48

%environment
export MPI_DIR=/cluster/mpi/mpich
export PATH="$MPI_DIR/bin:$PATH"
export LD_LIBRARY_PATH="$MPI_DIR/lib:$LD_LIBRARY_PATH"

%apprun laplace
/build/bin/laplace

GitLab CI job

Using the definition file from the previous section, we can define a job that builds the container
in a CI pipeline on every commit to the repository. We use a Docker image with Singularity
installed to run the job. To build the Singularity container, we run Singularity’s build
command in the script section. The generated container is then stored as an artifact for use
in later jobs. Although omitted in this demonstration, it is a good practice to also cache the
container to prevent expensive rebuilds.

build-singularity-mpich-bind:
stage: build
image:

name: quay.io/singularity/singularity:v3.10.4
entrypoint: [""]

artifacts:
paths: ["mpich-bind.sif"]

script:
- singularity build mpich-bind.sif mpich-bind.def
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5 Connecting to an HPC platform using HPC-Rocket

Scientific research often involves the use of complex software tools to analyze data and perform
simulations. Such software may require specific hardware and computational resources to run
efficiently, making it impractical to execute on regular workstations. High-performance comput-
ing clusters provide the necessary computational power to run such simulations. Still, users of
these clusters may not have the permissions required to install the software necessary to integrate
the cluster with continuous integration service.

To address this challenge, we develop HPC-Rocket [ML23], a command-line application
written in Python. HPC-Rocket aims to bridge the gap between CI services and HPC clus-
ters, allowing users to execute large-scale simulations on remote clusters without the need for
extensive permissions. Being a simple command-line application, HPC-Rocket can easily be
used in any continuous integration environment, therefore making it more portable than other
solutions that integrate directly with the CI platform (e.g. Jacamar CI [Exa]).

HPC-Rocket connects to a remote cluster via SSH and copies the files necessary for the
software execution. It then executes a specified job script via the Slurm scheduling system, which
is widely used in HPC clusters. Finally, the result data can also be collected and transferred back
to the machine that is executing the CI pipeline for further investigation. Figure 6 shows an
activity diagram of the HPC-Rocket workflow.

Connect via SSH Copy files to remote
machine Execute Slurm job

Poll job status

No

Yes
Job done?

Wait

Return result

Figure 6: Activity diagram of HPC-Rocket

HPC-Rocket can be easily configured using a specific file written in the YAML file format
that is also commonly used for the definition of CI pipelines. The configuration file contains the
address and credentials in the form of an SSH key or password for the target machine. Moreover,
HPC-Rocket supports the usage of environment variables, therefore allowing easy integration
with secret stores provided by the respective CI services. In case the remote cluster is only
accessible from a specific network HPC-Rocket is also capable of tunneling SSH commands
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through multiple proxy jumps. Additional sections describe file copying, collection, and cleaning
instructions. The final setting specifies which file should be passed to the Slurm scheduling
system. A configuration that works with the container produced with the GitLab CI job in section
4 is presented in the following listing:

host: $REMOTE_HOST
user: $REMOTE_USER
password: $REMOTE_PASSWORD

copy:
- from: laplace-mpich-bind.job

to: laplace2d-mpich-bind/laplace.job

- from: mpich-bind.sif
to: laplace2d-mpich-bind/mpich-bind.sif

collect:
- from: laplace2d-mpich-bind/results/*
to: results

- from: laplace2d-mpich-bind/laplace.out
to: results

sbatch: laplace2d-mpich-bind/laplace.job

GitLab CI job

To run the configuration given in the previous section, we define a new CI job using a Docker im-
age with Python installed. Since it requires the previously produced Singularity container,
it depends on the CI job defined in section 4 as can be seen in the needs section of the job.

Initially, HPC-Rocket is installed in the Docker container running in the CI pipeline using
Python’s package manager pip. There is no need to install any software on the HPC cluster itself.

The script section then executes HPC-Rocket with the given configuration. Finally, the
results produced by the simulation will be copied from the HPC cluster back to the CI pipeline
and uploaded as an artifact to be verified in the next CI job using the software Fieldcompare
as described in the next section.
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run-hpc-cluster-mpich-bind:
image: python:3.10

stage: simulation

needs:
- build-singularity-mpich-bind

before_script:
- pip install hpc-rocket==0.4.0

script:
- hpc-rocket launch rocket-mpich-bind.yml

artifacts:
paths:
- results/

6 Regression-testing with Fieldcompare

Testing is a fundamental part of software quality assurance, and a comprehensive test suite is
crucial to verify a software’s correctness. By testing all parts of a system and their interoper-
ability, the developers make sure the software behaves in correspondence with their intentions.
Research software, particularly those designed for numerical simulations, is frequently used for
the analysis and exploration of physical systems. This makes testing more difficult due to the
lack of a known expected behavior to test against.

However, with regression-testing one may ensure that changes to the code do not introduce
any undetected and unintentional changes to the software’s behavior (bugs). In this technique,
the results produced by the software are compared against stored reference results, for instance,
from computations with an earlier version of the software. If significant deviations are detected
between the results, the test suite is considered to have failed, thereby notifying the developers
that a particular code modification led to a change in behavior. What a significant deviation is
has to be decided for each test individually, and tolerances have to be chosen such that physically
relevant deviations are detected while avoiding false positives from machine precision issues.

In this workflow, we employ Fieldcompare [GKP+23], a regression-testing tool support-
ing multiple VTK and several other mesh based formats, to detect deviations between simulation
results produced in the CI pipeline and stored reference results (see Figure 7).
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Compare for equality

Generate

Simulation Stage

Reference Data

Computed Data

Figure 7: Compare computed data from a simulation stage with pre-computed reference data
utilizing Fieldcompare

Fieldcompare offers several commandline options to control relative and absolute toler-
ances to determine whether deviations in results are considered significant. The default behavior
for allowed deviations is rather strict but suffices for the demonstrated example workflow. The
CI configuration for the regression-test job is given in the following listing:

regression-test:
image: python:3.10

stage: test

needs: ["run-hpc-cluster-mpich-bind"]

before_script:
- pip install "fieldcompare[all]"

script:
- |
fieldcompare file results/TemperatureField.avs \

reference_data/TemperatureField.avs
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7 Workflow implementation for a regression test suite

In the presented sections Virtualisation with Singularity, Connecting to an HPC platform
using HPC-Rocket and Regression-testing with Fieldcompare we described the single
components of our workflow and how the CI jobs can be composed. In this section, we de-
scribe how to dynamically implement a complete regression test suite for our sample application
(see section 3) that can easily be extended with new test cases. This approach is optional and
the steps introduced in the previous chapters can of course be used by themselves. While this
dynamic generation of additional CI jobs adds more complexity to the pipeline setup, it allows
developers less familiar with CI pipeline technologies to add new test cases without modifying
the CI configuration.

To run our regression tests, we implemented the Python module jobgeneration to dynam-
ically generate a new CI workflow. The Python module will automatically pick up any file in a
test directory ending in -test. Using a template file, new GitLab CI jobs with HPC-Rocket and
Fieldcompare instructions will be generated for each of the collected test files. The first job
create-test-ci is responsible for creating the YAML file regression-test-ci.yml for the
new CI pipeline by executing the jobgeneration module and will upload the result as an artifact.

create-test-ci:
image: python:3.10

stage: test

before_script:
- pip install -r jobgeneration/requirements.txt

script:
- python3 -m jobgeneration test

artifacts:
paths:
- generated/
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A second job, trigger-test-ci, downloads the CI pipeline file generated by the previous job and
uses it to launch a child pipeline for the regression tests.

trigger-test-ci:
stage: test
needs:

- create-test-ci

trigger:
strategy: depend
include:

- artifact: generated/tests-ci.yml
job: create-test-ci

variables:
PARENT_PIPELINE_ID: $CI_PIPELINE_ID

The creation of the new CI pipeline file is realized by evaluating a jinja template. For each test
scenario, two jobs are created. The first job runs the actual test scenario using HPC-Rocket
while the second job performs the verification with Fieldcompare. A shortened version of
the template is shown in the listing below:

{% for test_case in test_cases %}
run-{{ test_case }}:

stage: simulation

script:
- hpc-rocket launch --watch tests/rocket.yml

# ...

verify-{{ test_case }}:
stage: verify
needs: ["run-{{ test_case }}"]

script:
- |

fieldcompare file results/TemperatureField.avs \
reference_data/{{ test_case }}.avs

# ...
{% endfor %}
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Adding a new test requires the addition of a Slurm file to the tests subfolder. The Python
jobgeneration script simplifies the process further by automatically scanning through all the
Slurm scripts and generating two new CI jobs to execute HPC-Rocket and Fieldcompare
as described above.

Parent Pipeline

Dynamic Regression Test Pipeline

create-test-ci

trigger-test-ci

deploy-container Test Scenario 1

Test Scenario 2

Verify Scenario 1

Verify Scenario 2

... ...

regression-test-ci.yml

Figure 8: Dynamically generated child CI pipeline

8 Conclusion

The role of software in scientific progress has increased significantly during the past decades.
Nevertheless, researchers still lack knowledge of software development and are confronted with
additional complexity when dealing with high-performance computing environments. Therefore,
they often face difficulties in simultaneously addressing the reproducibility and performance
needs of computational tasks.

Our paper presents an easily repeatable workflow leveraging Continuous Integration pipelines
to address the challenges of consistently running scientific computations in high-performance
computing environments. We have established a comprehensive and reusable solution by incor-
porating Singularity to build containers with a reproducible environment, HPC-Rocket
to execute computations on HPC clusters directly from CI pipelines, and Fieldcompare for
robust regression testing against trusted reference data.

Through the integration of automation and containerization, our workflow ensures consistent
and reliable execution of scientific tasks, enhancing reproducibility and reducing the likelihood
of human-induced errors.

The workflow has already been incorporated into the advanced research code VirtualFluids.
This software serves as a Computational Fluid Dynamics solver and is specifically designed to
address a wide range of complex flow problems. These include turbulent, multiphase, and multi-
component flows, as well as multi-field problems like Fluid-Structure Interaction [KGK18]. Due
to the computationally intensive nature of the numerical method, VirtualFluids has been devel-
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oped to shift the costly calculations to both multi-CPU architectures and multiple GPGPU accel-
erators. This workflow was employed to execute a set of regression tests on a local HPC cluster
to validate the consistent behavior of the VirtualFluids software. A current implementation of
this workflow can be found in the newest software publication of VirtualFluids [KSG+23].

Software and Data Availability

The software and code examples shown in the paper are developed under the MIT license and are
available on GitHub at https://github.com/TUBS-Suresoft/suresoft-hpc-workflow. All releases
of the software are published at Zenodo https://doi.org/10.5281/zenodo.7568959. This paper is
based on Version 0.1.0 of this software publication.
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