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Abstract: Several different approaches to define the formal operational semantics
of statecharts have been proposed in the literature, including visual techniques based
on graph transformation. These visual approaches either define a compiler seman-
tics (translating a concrete statechart into a semantical domain) or they define an
interpreter using complex control and helper structures. Existing visual semantics
definitions make it difficult to apply the classical theory of graph transformations to
analyze behavioral statechart properties due to the complex control structures.

In this paper, we define an interpreter semantics for statecharts based on amalga-
mated graph transformation where rule schemes are used to handle an arbitrary
number of transitions in orthogonal states in parallel. We build on an extension of
the existing theory of amalgamation from binary to multi-amalgamation including
nested application conditions to control rule applications for automatic simulation.
This is essential for the interpreter semantics of statecharts. The theory of amalga-
mation allows us to show termination of the interpreter semantics of well-behaved
statecharts, and especially for our running example, a producer-consumer system.

Keywords: operational semantics, statecharts, graph transformation, amalgamation

1 Introduction and Related Work

In [Har87], Harel introduced statecharts by enhancing finite automata by hierarchies, concur-
rency, and some communication issues. Over time, many versions with slightly differing fea-
tures and semantics have evolved. In the UML specification [OMG09], the semantics of UML
state machines is given as a textual description accompanying the syntax, but it is ambiguous
and explained essentially by examples. In [Bee02], a structured operational semantics (SOS) for
UML statecharts is given based on the preceding definition of a textual syntax for statecharts.
The semantics combines Kripke structures and an auxiliary semantics using deduction such that
a semantical step is a transition step in the Kripke structure. This semantics is difficult to un-
derstand due to its non-visual nature. The same problem arises in [RACH00], where labeled
transition systems and algebraic specification techniques are used.

There are also different approaches to define a visual rule-based semantics of statecharts. One
of the first was [MP96], where for each transition t a transition production pt is derived describing
the effects of the corresponding transition step. A similar approach is followed in [Kus01], where
first a state hierarchy is constructed explicitly, and then a semantical step is given by a complex
transformation unit constructed from the transition rules of a maximum set of independently
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enabled transitions. In [KGKK02], in addition, class and object diagrams are integrated. The
approach highly depends on concrete statechart models and is not a general interpreter semantics
for statecharts. Moreover, problems arise for nesting hierarchies, because the resulting situation
is not fixed but also depends on other current or inactive states. In [GP98], the hierarchies
of statecharts are flattened to a low-level graph representing an automaton defining the intended
semantics of the statechart model. This is an indirect definition of the semantics, and the resulting
transformation rules are model-specific and not applicable to statecharts in general.

In [Var02], Varró defines a general interpreter semantics for statecharts. His intention is to
separate syntactical and static semantic concepts (like conflicts, priorities etc.) of statecharts
from their dynamic operational semantics, which is specified by graph transformation rules. To
this end, he uses so-called model transition systems to control the application of the operational
rules, which highly depend on additional helper structures encoding activation or conflicts of
transitions and states.

Amalgamation is important for graph transformations in order to model synchronized par-
allelism of rules with shared subrules and corresponding transformations. For example, it has
been applied to applications of parallel graph transformations to communication-based systems
[TB94] and to model transformations from BPMN to BPEL [BEE+10]. The concept of amal-
gamation was first developed for the synchronization of two rules [BFH87] and then extended
to that of an arbitrary number of rules [Tae96] and integrated in the well-known theory of M -
adhesive systems [GEH10]. Using amalgamation for the definition of an operational semantics,
the main advantage of our solution is that we do not need helper structures or a complex external
control structure to cover the complex statecharts semantics: we define a state transition mainly
by one interaction scheme followed by some clean-up rules. Therefore, our model-independent
definition based on rule amalgamation is not only visual and intuitive but allows us to show
termination and forms a solid basis for applying further graph transformation-based analysis
techniques.

The rest of the paper is structured as follows. Section 2 gives a brief introduction to our model
of statecharts as typed attributed graphs. In Section 3, we review the basic ideas of algebraic
graph transformation [EEPT06] and give a short introduction to amalgamated transformation
based on [GEH10], which is used for the operational semantics of statecharts in Section 4. Based
on the given semantics, we discuss the formal analysis of termination of semantical steps in
statecharts. The operational semantics is demonstrated along a sample statechart modeling a
producer-consumer system in Section 5. In Section 6, the implementation in our tool Henshin is
presented. Finally, Section 7 concludes our paper and considers future work directions.

2 Modeling of Statecharts

In this section, we model statecharts by typed attributed graphs. We restrict ourselves to the most
interesting parts of the statechart diagrams: we allow orthogonal regions as well as state nesting.
But we do not handle entry and exit actions on states, nor extended state variables, and we allow
guards only to be conditions over active states.
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Figure 1: Sample statechart ProdCons

In Figure 1, the sample
statechart ProdCons is de-
picted modeling a producer-
consumer system. When
initialized, the system is in
the state prod, which has
three regions. There, in par-
allel a producer, a buffer,
and a consumer may act.
Parallel substates are mod-
elled in orthogonal regions of a common superstate (separated by dashed lines), which means
that while the superstate is active, also exactly one substate from each orthogonal region is ac-
tive. The producer alternates between the states produced and prepare, where the transition
produce models the actual production activity. It is guarded by a condition that the parallel state
empty is also current, meaning that the buffer is empty and may receive a product, which is then
modeled by the action incbuff denoted after the /-dash. Similarly to the producer, the buffer
alternates between the states empty and full, and the consumer between wait and consumed.
The transition consume is again guarded by the state full and followed by a decbuff-action
emptying the buffer. Two possible events may happen causing a state transition to leave the state
prod: the consumer may decide to finish the complete run; or there may be a failure detected
after the production leading to the error-state. After repair, the error-state can be exited via
the corresponding exit-transition and the standard behavior in the prod-state is executed again.

For our statechart language, we use typed attributed graphs, which are an extension of typed
graphs by attributes [EEPT06]. We do not give details here, but use an intuitive approach, where
the attributes of a node are given in a class diagram-like style. For the values of attributes in the
rules we can also use variables.

SM

name:String

R P

E

name:String
T S

name:String
isInitial:Bool

isFinal:Bool

TE

name:String

A

name:String
G

0..1

0..1 0..11

1 1

1

0..1

1
0..1

1

1

1..n

1..n

region behavior

currentnew

regions

states
trigger

action guard

begin

end

condition

next

sub

Figure 2: Type graph T GSC for statecharts

The type graph T GSC is given
in Figure 2. We use multiplic-
ities to denote some constraints
directly in the type graph. To
obtain valid statechart models,
additional constraints are de-
fined in Figure 3. We use nested
conditions, which are defined
explicitely in Section 3 and can
be intuitively understood as the
requirement to find occurrences of the morphism’s domain and codomain in the target object
leading to commuting diagrams. Note that iA defines the unique morphism from an initial ob-
ject I to some object A. Each diagram consists of exactly one statemachine SM (constraint c1)
containing one or more orthogonal regions R. A region contains states S, where state names are
unique within one region. A state may again contain one or more regions. Constraint c2 ex-
presses in addition that each region is contained in either exactly one state or the statemachine.
Moreover, states may be initial (attribute value isInitial = true) or final (attribute value
isFinal=true), each region has to contain exactly one initial and at most one final state, and
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final states cannot contain regions (constraint c3). Note that the edge type sub is only neces-
sary to compute all substates of a state, which we need for the definition of the semantics. This
relation is computed in the beginning using the states- and regions-edges.

A transition T begins and ends at a state, is triggered by an event E, and may be restricted by
a guard G and followed by an action A. A guard has one or more states as conditions. There is a
special event with attribute value name="exit" which is reserved for exiting a state after the
completion of all its orthogonal regions, which cannot have a guard condition (constraint c4).
Moreover, final states cannot be the beginning of a transition and their name attribute has to be
set to name="final" (constraint c5). In addition, transitions cannot link states in different

c1 := ∃iA1 ∧¬∃iB1

SM
name="sm"A1 SM SMB1

c2 := ∀(iA2 ,(∃a2∨∃b2))∧¬∃iD2 ∧¬∃iE2 ∧¬∃iF2

SM

R

B2

R

A2

S

R

C2

SM S

RE2

S S

RF2

S
name=x

S
name=x

R

D2

c3 := ∀(iA3 ,∃a3)∧¬∃iC3 ∧¬∃iD3 ∧¬∃iE3 ∧¬∃iF3

R

A3

S
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R

B3

S
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S

isInitial=true
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S

isFinal=true
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isFinal=true
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S

isFinal=true
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G T E
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c5 := ¬∃iA5 ∧∀(iB5 ,∃a5)

T S

isFinal=trueA5

S

isFinal=true

B5

S

name="final"

isFinal=true
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name=null

P
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end

begin
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Figure 3: Constraints limiting the valid statecharts

orthogonal regions (constraint c6),
which means that both regions
are directly contained in the same
state. A pointer P describes the
active states of the statemachine.
Note that newly inserted current
states are marked by a new-edge,
while for established current states
the current-edge is used (which
is assumed to be the standard type
and thus not marked in our dia-
grams). This differentiation is nec-
essary for the semantics, where we
need to distinguish between states
that were current before and states
that just became current in the last
state transition. Trigger elements
TE describe the events which have
to be handled by the statemachine.
Note that they do not necessarily
form a queue because orthogonal
states may lead to parallel triggers
which are sequentialized by the se-
mantics. For simplicity we still call
it event queue. There are at least
the empty trigger element with at-
tribute value name = null and
no outgoing next-edge, and ex-
actly one pointer in each diagram
(constraint c7). The pointer and
trigger elements are used later for
the description of the operational
semantics, but they do not belong
to the general syntactical descrip-
tion.
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Figure 4: Statechart ProdCons in abstract syntax

In Figure 4, the sample statechart ProdCons from Figure 1 is depicted in abstract syntax.
Nodes P and TE are added, which have to exist for a valid statechart model but are not visible in
the concrete syntax. For simulating statechart runs, the event queue of the statechart (consisting
of only one default element named null in Figure 4) can be filled by events to be processed (see
Figure 12 in Section 5 for a possible event queue for our sample statechart).
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Since edges of types sub, behavior, current, and next only belong to the semantics
but not to the syntax of statecharts, we leave them out for the definition of the language of
statecharts. All attributed graphs typed over this reduced type graph T GSC,Syn satisfying all the
constraints are valid statecharts.

Definition 1 (Language V LSC) Define the syntax type graph T GSC,Syn = T GSC\{sub,
behavior,current,next} based on the type graph T GSC in Figure 2. The language V LSC

consists of all typed attributed graphs respecting the type graph T GSC,Syn and the constraints in
Figure 3, i. e. V LSC = {(G, type) | type : G→ T GSC,Syn,G |= c1∧ . . .∧ c7}.

3 Introduction to Amalgamated Graph Transformation

In this section, we review the basic ideas of algebraic graph transformation [EEPT06] and give
a short introduction into amalgamated transformation based on [GEH10], to be used for the
interpreter semantics of statecharts in Section 4.

A graph grammar GG = (RS,SG) consists of a set of rules RS and a start graph SG. A rule

p = (L l←− K r−→ R,ac) consists of a left-hand side L, an interface K, a right-hand side R, two

injective graph morphisms L l←−K and K r−→ R, and an application condition ac on L. Applying
a rule p to a graph G means to find a match m of L in G, given by a graph morphism m : L→ G
which satisfies the application condition ac, and to replace this matched part m(L) by the corre-
sponding right-hand side R of the rule. By G

p,m
=⇒ H, we denote the direct graph transformation

where rule p is applied to G with match m leading to the result H. The formal construction
of a direct transformation is a double-pushout (DPO) as shown in the diagram with pushouts

L K R

G D H

ac l r

m (PO1) (PO2)

(PO1) and (PO2) in the category of graphs. The graph D is
the intermediate graph after removing m(L), and H is con-
structed as gluing of D and R along K. A graph transfor-
mation is a sequence of direct transformations, denoted by
G ∗
=⇒H, and the graph language L(GG) of graph grammar

GG is the set L(GG) = {G | SG ∗
=⇒ G} of all graphs derivable from SG.

An important concept of algebraic graph transformation is parallel and sequential indepen-
dence of graph transformation steps leading to the Local Church–Rosser and Parallelism Theo-
rem [Roz97], where parallel independent steps G

p1,m1
=⇒ G1 and G

p2,m2
=⇒ G2 lead to a parallel trans-

formation G
p1+p2,m
=⇒ H based on a parallel rule p1 + p2. If p1 and p2 share a common subrule

p0, the amalgamation theorem in [BFH87] shows that a pair of “amalgamable” transformations

G
(pi,mi)
=⇒ Gi (i = 1,2) leads to an amalgamated transformation G

p̃,m̃
=⇒H via the amalgamated rule

p̃ = p1 +p0 p2 constructed as gluing of p1 and p2 along p0. The concept of amalgamable trans-
formations is a weak version of parallel independence, with independence outside the subrule
match, and amalgamation can be considered as a kind of “synchronized parallelism”.

For the interpreter semantics of statecharts we need an extension of amalgamation in [BFH87]
w.r.t. three aspects: first, we need a family of rules p1, . . . , pn with a common subrule p0 for
n ≥ 2; second, we need typed attributed graphs [EEPT06] instead of “plain graphs”, and third,
we need rules with application conditions.
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In the following, we formulate the extended amalgamation concept for a general notion of
graphs and application conditions, where general graphs are objects in a weak adhesive HLR
category [EEPT06] and general application conditions are nested application conditions [HP09],
including positive and negative ones and their combinations by logic operators. For readers not
familiar with weak adhesive HLR categories and nested application conditions, it is sufficient
to think of rules based on graphs and (typed) attributed graphs with positive and/or negative
application conditions (see [EEPT06] for more details).

A match m : L→G satisfies a positive (negative) condition of the form ∃a (¬∃a) for a : L→N
if there is a (no) injective q : N→ G with q◦a = m. More general, m : L→ G satisfies a nested
condition of the form ∃(a,acN) on L with condition acN on N if there is an injective q : N→ G
with q◦a = m and q satisfies acN . Note that ∀(a,acN) is denoted as ¬∃(a,¬acN) (see application
conditions in Figure 9 and Figure 10).

L L′

G

ac Shift(t,ac)t

m m′=

An important concept is the shift of ac on L along
a morphism t : L→ L′ s.t. for all m′ ◦ t : L→ G, m′

satisfies Shift(t,ac) if and only if m = m′ ◦ t : L→ G
satisfies ac [EHL10].

Based on [GEH10], we are now able to introduce amalgamated rules and transformations with
a common subrule p0 of p1, . . . , pn. A kernel morphism describes how the subrule is embedded
into the larger rules.

L0 K0 R0

Li Ki Ri

l0 r0

si,L
si,K si,R(1i) (2i)

Definition 2 (Kernel morphism). Given rules pi = (Li
li←−

Ki
ri−→ Ri,aci) for i = 0, . . . ,n, a kernel morphism si : p0→ pi

consists of morphisms si,L : L0 → Li, si,K : K0 → Ki, and si,R :
R0 → Ri such that in the diagram on the right (1i) and (2i)
are pullbacks and (1i) has a pushout complement for si,L ◦ l0,
i.e. si,L satisfies the gluing condition w.r.t. l0. The pullbacks (1i) and (2i) mean that K0 is the
intersection of Ki with L0 and also of Ki with R0.

p0 p̃

pi

t0

si ti=

Definition 3 (Amalgamated rule and transformation). Given rules pi =

(Li
li←− Ki

ri−→ Ri,aci) for i = 0, ..,n with kernel morphisms si : p0→ pi (i =
1, . . . ,n), then the amalgamated rule p̃ = (L̃←− K̃ −→ R̃, ãc) of p1, . . . , pn via
p0 is constructed as the componentwise gluing of p1, . . . , pn along p0, where
ãc is the conjunction of Shift(ti,L,aci). L̃ is the gluing of L1, . . . ,Ln with shared L0 leading to
ti,L : Li → L̃. Similar gluing constructions lead to K̃ and R̃ and we obtain kernel morphisms
ti : pi→ p̃ and ti ◦ si = t0 for i = 1, . . . ,n. We call p0 kernel rule, and p1, . . . , pn multi rules. An
amalgamated transformation G

p̃
=⇒ H is a transformation via the amalgamated rule p̃.

Example 1 (Amalgamated rule construction) We construct an amalgamated rule for the ini-
tialization of a statemachine with two orthogonal regions. A pointer has to be linked to the
statemachine and to the initial states of both the statemachine’s regions. Rules are depicted in a
compact notation where we do not show the interface K. It can be inferred by the intersection
L∩R. The mappings are given as numberings for nodes and can be inferred for edges. The
kernel rule p0 in Figure 5 models the linking of the pointer to the statemachine. We have two
multi-rules p1 and p2 modelling the linking of the pointer to the initial states of two different
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p0 : 1:SM 2:P
L0

1:SM 2:P
R0

p1 :

1:SM 2:P

3:R
4:S

isInitial=trueL1

1:SM 2:P

3:R
4:S

isInitial=trueR1
p2 :

1:SM 2:P

5:R
6:S

isInitial=trueL2

1:SM 2:P

5:R
6:S

isInitial=trueR2

p̃ :

1:SM 2:P

3:R
4:S

isInitial=true

5:R
6:S

isInitial=trueL̃

1:SM 2:P

3:R
4:S

isInitial=true

5:R
6:S

isInitial=trueR̃

s1,L s1,R

s2,L

s2,R

t1,L

t1,R

t2,L t2,R

new

new

new

new

Figure 5: Construction of amalgamated rule

regions. In the amalgamated rule p̃, the common subaction (linking the pointer to the statema-
chine) is represented only once since the multi-rules p1 and p2 have been glued at the kernel rule
p0. The kernel morphisms are ti : pi→ p̃ for i = 1,2.

Given a bundle of direct transformations G
pi,mi
=⇒ Gi (i = 1, ..,n), where p0 is a subrule of

pi, we want to analyze whether the amalgamated rule p̃ is applicable to G combining all direct
transformations. This is possible if they are multi-amalgamable, i.e. the matches agree on p0 and
are parallel independent outside. This concept of multi-amalgamability is a direct generalization
of amalgamability in [BFH87] and leads to the following theorem [GEH10].

Theorem 1 (Multi-amalgamation) Given rules p0, . . . , pn, where p0 is a subrule of pi, and
multi-amalgamable direct transformations G

pi,mi
=⇒Gi (i = 1, . . . ,n), then there is an amalgamated

transformation G
p̃,m̃
=⇒ H.

Proof Idea: Using the properties of the multi-amalgamable bundle, we can show that m̃ with
m̃ ◦ ti,L = mi induced by the colimit is a valid match for the amalgamated rule p̃ leading to the
amalgamated transformation because the componentwise gluing is a colimit construction. For
an extended proof idea see Thm. 2 in [GEH10], the complete proof can be found in [Gol11].

For many application areas, including the interpreter semantics of statecharts, we do not want
to explicitly define the kernel morphisms between the kernel rule and the multi rules, but we
want to obtain them dependent on the object to be transformed. In this case, only an interaction
scheme is= {s1, . . . ,sk}with kernel morphisms s j : p0→ p j ( j = 1, . . . ,k) is given, which defines
different bundles of kernel morphisms s′i : p0 → p′i (i = 1, . . . ,n) where each p′i corresponds to
some p j for j ≤ k.
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Definition 4 (Interaction scheme) A kernel rule p0 and a set of multi rules {p1, . . . , pk} with
kernel morphisms si : p0→ pi form an interaction scheme is = {s1, . . . ,sk}.

Given an interaction scheme, we want to apply as many rules p j as often as possible over
a certain match of the kernel rule p0. In the following, we consider maximal weakly disjoint
matchings, where we require the matchings of the multi rules not only to be multi-amalgamable,
but also disjoint up to the match of the kernel rule, and maximal in the sense that no more valid
matches for any multi rule in the interaction scheme can be found.

L0 L′i

L′` G

si,L

s`,L mi

m`

(Pi`)

Definition 5 (Maximal weakly disjoint matching). Given an interaction
scheme is = {s1, . . . ,sk} and a tuple of matchings m = (mi : L′i→G) with
i = 1, . . . ,n, where each p′i corresponds to some p j for j ≤ k, with trans-

formations G
p′i,mi
=⇒Gi, then m forms a maximal weakly disjoint matching if

the bundle G
p′i,mi
=⇒Gi is multi-amalgamable, the square (Pi`) is a pullback for all i 6= `∈{1, . . . ,n},

and for any rule p j no other match m′ : L j→G can be found such that ((mi),m′) fulfills this prop-
erty.

Note that different matches may use the same rule p j. The pullback requirement already
implies the existence of the morphisms to show that the matches are parallel independent outside
the kernel match. Only the property for the application conditions has to be checked in addition.

Proposition 1 Given an object G, a bundle of kernel morphisms s = (s1, . . . ,sn), and matches
m1, . . . ,mn leading to a bundle of direct transformations G =

pi,mi
==⇒ Gi such that mi ◦ si,L = m0

and square (Pi`) is a pullback for all i 6= ` then the bundle G =
pi,mi
==⇒ Gi is s-amalgamable for

transformations without application conditions.

Proof. By construction, the matches mi agree on the match m0 of the kernel rule. It remains to
be shown that they are parallel independent outside the kernel match.

K0

L0

Ki

Li

P

L j

Di

G

Ki Ri

Di Gi

Li

G

l0
si,K

p

s j,L

si,Lli
ki

f̂

m̂

m j

fi mi

fi

li

mi

ri

ki

gi

ni(20i) (21i)

Given the transfor-
mations G =

pi,mi
==⇒ Gi

with pushouts (20i)
and (21i), consider
the following cube,
where the bottom face
is pushout (20i), the
back right face is a
pullback by definition, and the front right face is pullback (Pi j). Now construct the pullback
of fi and m j as the front left face, and from m j ◦ s j,L ◦ l0 = mi ◦ si,L ◦ l0 = mi ◦ li ◦ si,K = fi ◦ki ◦ si,K

we obtain a morphism p with f̂ ◦ p = s j,L ◦ l0 and m̂◦ p = ki ◦ si,K .
From pullback composition and decomposition it follows that also the back left face is a pull-

back. Now the M -van Kampen property leads to a pushout in the top face. Since pushout
complements are unique up to isomorphism, P is isomorphic to K j. Thus the morphism p ji := m̂
leads to parallel independence outside the kernel match. This construction can be applied for all
pairs i, j leading to weakly parallel independent matches without application conditions.
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With this characterization of maximal weakly independent matches we obtain the following
algorithm for their computation.

Algorithm 1 (Maximal weakly disjoint matching). Given an object G and an interaction scheme
is = {s1, . . . ,sk}, a maximal weakly disjoint matching m = (m0,m1, . . . ,mn) can be computed as
follows:

1. Set i = 0. Choose a kernel matching m0 : L0→ G such that G =
p0,m0
===⇒ G0 is a valid trans-

formation.

2. As long as possible: Increase i, choose a multi rule p̂i = p j with j ∈ {1, . . . ,k}, and find a
match mi : L j→G such that mi ◦s j,L = m0, G =

p j,mi
==⇒ Gi is a valid transformation, mi 6= m`,

the square (Pi`) is a pullback, and p̂` is applicable to Gi via the extension of m` to Gi for
all `= 1, . . . , i−1, i.e. the application condition âc` is satisfied for this extended match.

3. If no more valid matches for any rule in the interaction scheme can be found, return m =
(m0,m1, . . . ,mn).

Note, that we may find different maximal weakly disjoint matchings for a given interaction
scheme, which may even lead to the same bundle of kernel morphisms. For a fixed maximal

weakly disjoint match we can apply Theorem 1 leading to an amalgamated transformation G
p̃′,m̃
=⇒

H, where p̃′ is the amalgamated rule of p′1, . . . , p′n via p0.
Given a set IS of interaction schemes is and a start graph SG, we obtain an amalgamated

graph grammar with amalgamated transformations via maximal matchings, defined by maximal
weakly disjoint matchings of the corresponding multi rules.

Definition 6 (Amalgamated graph grammar) An amalgamated graph grammar AGG = (IS,SG)
consists of a set IS of interaction schemes and a start graph SG. The language L(AGG) of AGG
is defined by L(AGG) = {G | ∃ amalgamated transformation SG =

∗⇒ G via maximal matchings}.

4 An Interpreter Semantics for Statecharts

The semantics of statecharts is modeled by amalgamated transformations, where one step in the
semantics is modeled by several applications of interaction schemes. The main part of a state
transition can be modeled by a single interaction scheme, but some additional rules are necessary
to remove and add the proper pointers from and to hierarchical states. For the application of an
interaction scheme we use maximal weakly disjoint matchings.

The termination of the interpreter semantics of a statechart in general depends on the struc-
tural properties of the simulated statechart. A simulation will terminate for the trivial cases that
the event queue is empty, that no transition triggers an action, or that there is no transition from
any active state triggered by the current head elements of the event queue. Since transitions may
trigger actions which are added as new events to the queue it is possible that the simulation of a
statechart may not terminate even if all semantical steps do. Hence, it is useful to define struc-
tural constraints that provide a sufficient condition guaranteeing termination of the simulation in

GCM 2010 10 / 24



ECEASST

general for well-behaved statecharts, where we forbid cycles in the dependencies of actions and
events.

Definition 7 (Well-behaved statecharts) For a given statechart model, the action-event graph
has as nodes all event names and an edge (n1,n2) if an event with name n1 triggers an action
named n2.

A statechart is called well-behaved if it is finite, has an acyclic state hierarchy, and its action-
event graph is acyclic.

Example 2 An example of a well-behaved statechart is our statechart model in Figure 1. It is
finite, has an acyclic state hierarchy, and its action-event graph is shown in Figure 6. This graph
is acyclic, since the only action-event dependencies in our statechart occur between produce
triggering incbuff and consume triggering decbuff.

arrive repair fail produce incbuff

next finish exit consume decbuff

Figure 6: The action-event graph of our statechart example

The semantics of our statecharts is modeled by amalgamated transformations, but we apply
the rules in a more restricted way, meaning that one step in the semantics is modeled by several
applications of interaction schemes. We assume to have a finite statechart with a finite event
queue where all trigger elements are already given in the diagram as an initial event queue.

For the initialization step, we compute all substates of all states by applying the rules setSub
and transSub in Figure 7 as long as possible. Then, the interaction scheme init is applied
followed by the interaction scheme enterRegions applied as long as possible, which are
depicted in Figure 8. With init, the pointer is associated to the statemachine and all initial states
of the statemachine’s regions. The interaction scheme enterRegions handles the nesting and
sets the current pointer also to the initial states contained in an active state. When applied as long
as possible, this means that all substates are handled. Note that not all initial substates become

setSub

1:S 2:R 3:S

L11

1:S 2:R 3:S

R11

ac11 = ¬∃a11 L11 R11

transSub

1:S 2:S 3:S

L21

1:S 2:S 3:S

R21

ac21 = ¬∃a21 L21 R21

a11

sub

a21

sub sub sub sub

sub

Figure 7: The rules setSub and transSub
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init = (s3)

1:SM 2:P

L30

1:SM 2:P

R30

1:SM 2:P

3:R
4:S

isInitial=trueL31

1:SM 2:P

3:R
4:S

isInitial=trueR31

ac30 = ¬∃a30 L30 R30

ac31 = Shift(s3,L,ac30)

enterRegions = (idp40 ,s4,s′4,s
′′
4)

1:S 2:P

L40

1:S 2:P

R40

1:S 2:P

3:R
4:S

isInitial=trueL41

1:S 2:P

3:R
4:S

isInitial=trueR41

ac40 = true

ac41 = ¬∃a41∧¬∃b41

L41

1:S 2:P

3:R S
L41

1:S 2:P

3:R S

L40 R40

1:S 2:P

5:R 6:S

L42

1:S 2:P

5:R 6:S

R42

ac42 = ¬∃a42∧¬∃b42

L42
1:S 2:P

5:R 6:S

L42
1:S 2:P

5:R 6:S

L40 R40

1:S 2:P
L43

1:S 2:P
R43

ac43 = true

a42 b42
new new

new

new

a41 b41

new new

new

new

new

a30

s3,L s3,R

s4,L s4,R

s′4,L s′4,R

s′′4,L s′′4,R

new

new

new

new

Figure 8: The interaction schemes init and enterRegions

active, but only those which are contained in a hierarchy of nested initial states. The interaction
scheme enterRegions also contains the identical kernel morphism idp40 : p40→ p40. Using
maximal weakly disjoint matchings, an identical kernel morphism has the effect that the kernel
rule can be applied without a valid match for any multi rule. This ensures that this kernel rule is
also applied in the lowest hierarchy level changing the new- to a current-edge. For later use,
also double edges are deleted and if the direct superstate is not marked by the pointer a new-edge
is added to it.
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The application of the rules setSub and transSub terminates because there could be at
most one sub-edge between each pair of states due to the application conditions. Since no new
states are created, these rules can only be applied finitely often.

The initialization step (applying init once and enterRegions as long as possible) termi-
nates because the application of the interaction scheme enterRegions terminates: each appli-
cation of enterRegions replaces one new-edge with a current-edge. The multi rules p41
and p42 create new new-edges on the next lower and upper levels of a hierarchical state, but if the
state hierarchy is acyclic this interaction scheme is only applicable a finite number of times. The
same holds for the multi rule p43 which deletes double edges, since the number of current-
and new-edges is decreased. Thus, the transformation terminates.

Proposition 2 (Termination of initialization step) For well-behaved statecharts, the initializa-
tion step terminates.

A state transition representing a semantical step, i. e. switching from one state to another,
is done by the application of the interaction scheme transitionStep shown in Figure 9
followed by the interaction schemes enterRegions!, leaveState1!, leaveState2!,
and leaveRegions! given in Figure 8, 10, and 11 in this order, where ! means that the
corresponding interaction scheme is applied as long as possible.

For such a semantical step, the first trigger element (or one of the first if more than one action
of different orthogonal substates may occur next) is chosen and deleted, while the corresponding
state transitions are executed. The application condition ac50 ensures that exit-trigger elements
are handled with priority, because the rule is only applicable if for any existing exit-trigger el-
ement (∀a50) this is not a start element in the queue, i.e. it has a predecessor (∃b50). Moreover,
it ensures that the chosen trigger element is a starting one, i.e. has no predecessor (¬∃c50). Note
that a transition triggered by its trigger element is active if the state it begins at is active, its guard
condition state is active, and it has no active substate where a transition triggered by the same
event is active. These restrictions are handled by the application conditions ac51 and ac52. More-
over, if an action is provoked, this has to be added as one of the first next trigger elements. The
two multi rules of transitionStep handle the state transition with and without action, re-
spectively. The application condition ac52 is not shown explicitly, but the morphisms a52, . . . , f52
are similar to a51, . . . , f51 except that all objects contain in addition the node 8:A.

The interaction schemes leaveState1, leaveState2, and leaveRegions handle the
correct selection of the active states. When for a yet active state with regions, by state transitions
all states in one of its regions are no longer active, also this superstate is no longer active, which
is described by leaveState1. The interaction scheme leaveState2 handles the case that,
when a state become inactive by a state transition, also all its substates become inactive. If for
a state with orthogonal regions the final state in each region is reached then these final states
become inactive, and if the superstate has an exit-transition it is added as the next trigger
element. This is handled by leaveRegions.

For the termination of a semantical step it is sufficient to show that the four interaction schemes
enterRegions, leaveState1, leaveState2, and leaveRegions are only applicable
a finite number of times. For the interaction scheme enterRegions we have already argued
that above. The interaction schemes leaveState1, leaveState2 as well as the multi rule
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transitionStep = (s5,s′5)

L50
1:P 2:TE

name=x

TE

name="exit"3:TE

1:P

3:TE
TE

TE

name="exit"

2:TE
name=x

ac50 = ∀(a50,∃b50)∧¬∃c50 L50 1:P TE
2:TE
name=x

3:TE

1:P 2:TE
name=x

3:TE

L50

1:P 3:TE

R50

1:P 2:TE
name=x

3:TE

4:S

5:T

6:S

7:E
name=x

L51

1:P 3:TE

4:S

5:T

6:S

7:E
name=x

R51

ac51 = Shift(s5,L,ac50)∧¬∃g51∧¬∃a51∧∀(b51,∃c51)∧∀(d51,∃(e51,¬∃ f51))

L51 L52 L51 A5 L51 B5 C5 L51 D5 E5 F5

1:P 2:TE

name="exit"

3:TE

4:S
5:T

S
6:S

7:E

name="exit"A5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S

7:E
name=x

G SB5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S

7:E
name=x

G SC5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S
T

E
name=x

7:E
name=x

S

D5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S
T

E
name=x

7:E
name=x

S

G
S

E5

1:P 2:TE
name=x

3:TE

4:S
5:T

6:S
T

E
name=x

7:E
name=x

S

G
S

F5

L50 R50

1:P 2:TE
name=x

8:A
name=y

3:TE

4:S

5:T

6:S

7:E
name=x

L52

TE
name=y

1:P 3:TE

4:S

5:T

6:S

7:E
name=x

8:A
name=yR52

ac52 = Shift(s′5,L,ac50)∧¬∃a52∧∀(b52,∃c52)∧∀(d52,∃(e52,¬∃ f52))

s5,L s5,R

a50 b50

c50

g51 b51 c51 d51 e51 f51a51

begin

end

new

begin

end

begin

end

begin

end

begin

end

begin

end
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end
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end
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s′5,L s′5,R

begin

end

new

begin

end

Figure 9: The interaction scheme transitionStep

p81 of the interaction scheme leaveRegions reduce the number of active states in the state-
chart by deleting at least one current-edge. The application of the second multi rule p82 of
the interaction scheme leaveRegions prevents another match for itself because it creates the
situation forbidden by its application condition ac82. It follows that the application of each of
these four interaction schemes as long as possible terminates.
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leaveState1 = (idp60)

ac60 = ∃(a60,¬∃b60) L60
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R71

ac71 = Shift(s7,L,ac70)

a70

s7,L s7,R

a60 b60

Figure 10: The interaction schemes leaveState1 and leaveState2

leaveRegions = (s8,s′8)
ac80 = ∀(a80,∃b80)∧¬∃c80∧¬∃d80
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Figure 11: The interaction scheme leaveRegions
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Proposition 3 (Termination of semantical steps) Given a well-behaved statechart, each seman-
tical step terminates.

Combining all the rules as explained above leads to the semantics of statecharts.

Definition 8 (Statechart semantics) The operational semantics of statecharts consists of one
initialization step followed by as many as possible semantical steps defined as follows:

• Initialization step. For a statechart model M ∈V LSC (see Definition 1) we obtain a model
Minitial by applying the sequence setSub!, transSub!, init, enterRegions! to
M.

• Semantical step. Consider a model M1 with M1 obtained by a finite number of seman-
tical steps from a model Minitial for some M ∈ V LSC, then a semantical step from M1
to M2 is computed by applying the sequence transitionStep, enterRegions!,
leaveState1!, leaveState2!, leaveRegions! to M1.

Moreover, combining our termination results we can conclude the termination of the state-
charts semantics for well-behaved statecharts.

Theorem 2 (Termination of interpreter semantics) For well-behaved statecharts with finite
event queue, the interpreter semantics terminates.

Proof. According to Proposition 2 and Proposition 3, each initialization step and each semanti-
cal step terminates. Moreover, each semantical step consumes an event from the event queue. If
it triggers an action, the acyclic action-event graph ensures that there are only chains of events
triggering actions, but no cycles, such that after the execution of this chain the number of ele-
ments in the event queue actually decreases. Thus, after finitely many semantical steps the event
queue is empty and the operational semantics terminates.

5 Application to the Running Example

We now consider an initialization and a semantical step in our statechart example from Figure 1.
In the top of Figure 12, we show the incoming event queue as needed for our system run to be
processed. Note that the actions that are triggered by state transitions do not occur here because
they are started internally, while the other events have to be supplied from the outside. Thus, the
internal events are supplied by the semantical rules themselves, while the external ones have to be
given. For simplicity, we assume that the complete external event queue is given in advance, but
the events could also appear one after the other using some additional rule that appends an event
at the end of the queue. In the bottom of Figure 12, the current states and their corresponding
state transitions are depicted. We want to simulate these semantical steps now using the rules
for the semantics applied to the statechart in abstract syntax in Figure 4, extended by the event
queue from Figure 12.

First, the initialization has to be done. We compute all sub-edges by applying the rules
setSub and transSub in Figure 7 as long as possible. For the actual initialization, we apply
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Figure 12: Event queue and state transitions

the interaction scheme init from Figure 8 followed by the application of enterRegions
as long as possible. With init, we connect the state machine and the pointer node, and in
addition set the pointer to the prod-state using a new-edge. Now the only available kernel
match for enterRegions is the match mapping node 1 to the prod-state, and with maximal
matchings we obtain the bundle of kernel morphisms (idp40 ,s4,s4,s4), where the node 4 in L41
is mapped to the states produced, empty, and wait, respectively. After the application of
the corresponding amalgamated rule, the current pointer is now connected to the state machine
and the state prod, and via new-edges to the states produced, empty, and wait. Further
applications of enterRegions using these three states for the kernel matches, respectively,
lead to the bundle (idp40) thus changing the new-edges to current-edges by its application.

error

call

repair

prod

produced

prepare

empty

full

wait

consumed

arrive

finish

repair

finish

exit
next

produce
[empty]
/incbuff

fail

inc-
buff

dec-
buff

next
consume
[full]

/decbuff

Figure 13: The statechart after the initialization step

As a result, the states prod,
produced, empty, and
wait are current, which
is the initial situation for
the statemachine as shown
in Figure 13, where the
current states are marked
by thicker lines. We do
not find additional matches
for enterRegions, as we
only have one level of nesting in our diagram, which means that the initialization is completed.
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For a state transition, the interaction scheme transitionStep in Figure 9 is applied, fol-
lowed by the interaction schemes enterRegions!, leaveState1!, leaveState2!, and
leaveRegions! given in Figure 8, 10, and 11.

For the initial situation, the kernel rule p50 in Figure 9 has to be matched such that the node
2 is mapped to the first trigger element next and the node 3 to produce, otherwise the ap-
plication condition of the rule p50 would be violated. For the multi rules, there are two events
with the name next, but since the state consumed is not current, only one match for L51
is found mapping the nodes 4 to the current state produced and 6 to the state prepare.
All application conditions are fulfilled, since this transition does not have a guard or action,
and the state produced does not have any substates. Thus, the application of the bundle (s5)
deletes the first trigger element next, which is done by the kernel rule, and redirects the current
pointer from produced to prepare via a new-edge. An application of the interaction scheme
enterRegions using the bundle (idp40) changes this new-edge to a current-edge. Since
we do not find further matches for L40, L60, L71, L81, and L82, the other interaction schemes
cannot be applied. This means that the states prod, prepare, empty, and wait are now
the current states, which is the situation after the state transition triggered by next as shown in
Figure 12.

For the next match of the kernel rule p50, the node 2 is mapped to the new next trigger ele-
ment produce and 3 is mapped to consume. Since the transition produce has an action,
we cannot apply the multi rule p51 but p52 has a valid match. In particular, the application con-
dition is fulfilled because the guard condition state empty is current and the state prepare
does not have any substates. Thus, the bundle (s′5) leads to the deletion of the trigger element
produce, the current pointer is redirected from prepare to produced, and a new trig-
ger element incbuff is inserted with a next-edge to the trigger element consume. Again,
enterRegions changes the new- to a current-edge and we do not find further matches
for L40, L60, L71, L81, and L82. This means that now the states prod, produced, empty, and
wait are current.

We can process our trigger element queue step by step retracing the state transitions by the
application of the rules. We do not explain all steps explicitly, but skip until after the last
decbuff-trigger element, which leads to the current states prod, produced, empty, and
consumed.

The next match of the kernel rule p50 maps the nodes 2 to the trigger element fail and
3 to arrive. The only match for the multi rules maps the nodes 4 and 6 in L51 to the states
produced and error, respectively. Since the application condition is fulfilled, the application
of the bundle (s5) leads to the deletion of the trigger element fail, and the current pointer
is redirected from produced to error. Now we find a match for the interaction scheme
enterRegions mapping the node 1 to the state error and 4 to the state call. Thus the
application of the bundle (idp40 ,s4) adds a new pointer to the state call, which is then changed
from new to current. Afterwards, we find a match for leaveState1, where the kernel
rule match maps the node 1 to the state prod. The application condition is fulfilled because
there is a region - the one for the producer - where no state is current. Thus, the current-
edge to prod is deleted. No more matches for L60 can be found, but there are two different
matches for the multi rule p71 of leaveState2 matching the node 3 to the states empty and
consumed, respectively. The application of the bundle (s7,s7) then leads to the deletion of the
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current pointer for the states empty and consumed. No more matches for L71, L81, and L82 can
be found. Altogether, the states error and call are current now. This is exactly the situation
as described in Figure 12 after the state transition triggered by the fail-event.

Now we skip again two more trigger elements leading to the remaining trigger element queue
finish → null and the current states error and repair. The kernel rule p50 is now
matched to these two trigger elements, and the application of the bundle (s5) deletes the trigger
element finish and redirects the current pointer from repair to final, the final state within
the error-state. With enterRegions, the corresponding new-edge is set to current.
No matches for L60 and L71 can be found, but we find a match for the interaction scheme
leaveRegions, where the kernel rule is matched such that the node 1 is mapped to the state
error and 3 is mapped to the null-trigger element. The application condition is fulfilled be-
cause all current substates of error are final states - actually, there is only the one - and null
is the first trigger element in the queue. Now there is a match for L81 mapping the node 4 to
the state final and a match for L82 mapping the nodes 4 and 5 to the transition and the event
between the stated error and prod. After the application of the bundle (s8,s′8), the current
pointer is deleted from the final-state, and a new exit-trigger element is inserted before
the null-trigger element. No more matches for L81 and L82 can be found, thus only the state
error is current. A last application of the interaction scheme transitionStep followed by
enterRegions leads back to the initial situation and completes our example, since the event
queue is empty except for the default element null.

According to Thm. 2, the simulation of our example terminates because our statechart is well-
behaved and the event queue is finite.

6 Implementation

Recently, we have extended our tool Henshin1 by visual editors for amalgamated rules and ap-
plication conditions [BESW10]. Henshin is an Eclipse plug-in supporting visual modeling and
execution of EMF model transformations, i.e. transformations of models conforming to a meta-
model given in the EMF Ecore format. The transformation approach we use in our tool is based
on graph transformation concepts which are lifted to EMF model transformation by also taking
containment relations in meta-models into account [ABJ+10].

The recent extensions of Henshin enable us to validate the model of the visual interpreter
semantics presented in this paper. The startgraph of our statechart interpreter is modeled in
Henshin as an EMF instance (see Figure 14).

For simulation, Henshin supports the definition of control structures (called transformation
units) for rules, such as “apply rule r1 once, and then the rules from the set {r1,r2} in arbitrary
order and as long as possible”. Transformation units may be nested, the atomic unit being a
rule.

The main transformation unit for the statechart simulation is shown in Figure 15. Here, the
initialization step is executed by applying the subunit initStatechart (see right part of Figure 15).
This step is realized by a sequence of units inserting at first the auxiliary edges of the type
sub in the statechart model by applying the CountedUnit initSubEdges (containing a rule) as

1 http://www.eclipse.org/modeling/emft/henshin/
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Figure 14: The initial statechart modeled in Henshin

long as possible (denoted by the count number “-1”), then applying the AmalgamationUnit init
which corresponds to the interaction scheme init in Figure 8, followed by the interaction scheme
enterAllRegions applied as long as possible.

Having performed the initialization step, the second step in the main unit execute consists
of performing as many semantical steps as possible, triggered by the event queue. The unit
executeAllEvents applies its subunit executeEvent (shown in the left part of Figure 16) as long as
possible.

In this step, the interaction scheme transitionStep is applied, followed by as many applica-
tions as possible of the interaction schemes for entering regions and states, and leaving them
afterwards. Interaction schemes like transitionStep are visualized in Henshin as a rule set con-
taining one kernel rule and one or more multi-rules (see right part of Figure 16).

A multi-rule view in Henshin shows in an integrated way the corresponding kernel rule ele-
ments as simple rectangles and the additional multi-rule elements as rectangles with a shadow
(see Figure 17). Application conditions for rules are visualized as logical connector blocks to the
left of the rule’s left-hand side (see left side of Figure 17), where the inherent morphisms can be
expanded to a morphism view similar to the rule view, where mappings are indicated by colors
and the numbers of the nodes.
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Figure 15: The main transformation unit execute (left) and its subunit initStatechart (right)

Figure 16: The transformation unit executeEvent (left) and its subunit transitionStep (right)

Figure 17: The multi-rule transitionStep M52
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7 Conclusion and Future Work

In this paper, we have defined a formal interpreter semantics for statecharts leading to a visual
interpreter semantics. It is based on the theory of algebraic graph transformation and hence a
solid basis for applying graph transformation-based analysis techniques. Unfortunately, the clas-
sical theory of graph transformations [Roz97] is not adequate to model the interpreter semantics
of statecharts because we need rule schemes to handle an arbitrary number of transitions in or-
thogonal states in parallel. In this paper, we have solved this problem using amalgamated graph
transformation [GEH10] in order to handle the interpreter semantics. As a first step towards the
analysis of this semantics we have shown the termination of initialization and semantical steps
and, more general, the termination of the interpreter semantics for well-behaved statecharts.

Our formal approach is also a promising basis to analyze other properties like confluence and
functional behavior in the future. Since termination and local confluence implies confluence, it
is sufficient to analyze local confluence. This has been done successfully for algebraic graph
transformation based on standard rules and critical pairs [EEPT06]. It remains to extend this
analysis from standard rules to amalgamated rules constructed by interaction schemes and to
take into account maximal matchings as well as all essential amalgamated rules constructed
from one interaction scheme.

The formal definition of syntax and operational semantics of statecharts in this paper provides
the basis for a model transformation from statecharts to Petri nets [GEH11], which is shown to
be semantics-preserving in [Gol11].

Another interesting research area to be considered in future is the nesting of kernel morphisms,
which may lead to a hierarchical interaction scheme such that a semantical step of the statechart
is actually a direct amalgamated transformation over one interaction scheme, and we no longer
need rules for redirecting the current pointer afterwards.
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