
Electronic Communications of the EASST
Volume 39 (2011)

Graph Computation Models
Selected Revised Papers from the
Third International Workshop on

Graph Computation Models (GCM 2010)

Minimizing Finite Automata with Graph Programs

Detlef Plump, Robin Suri, and Ambuj Singh

15 pages

Guest Editors: Rachid Echahed, Annegret Habel, Mohamed Mosbah
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Minimizing Finite Automata with Graph Programs ∗

Detlef Plump1, Robin Suri2, and Ambuj Singh3

1 The University of York, UK2 Indian Institute of Technology Roorkee, India3 Indian Institute
of Technology Kanpur, India

Abstract: GP (for Graph Programs) is a rule-based, nondeterministic program-
ming language for solving graph problems at a high level of abstraction, freeing
programmers from dealing with low-level data structures. In this case study, we
present a graph program which minimizes finite automata. Theprogram represents
an automaton by its transition diagram, computes the state equivalence relation, and
merges equivalent states such that the resulting automatonis minimal and equivalent
to the input automaton. We illustrate how the program works by a running exam-
ple and argue that it correctly implements the minimizationalgorithm of Hopcroft,
Motwani and Ullman. We also prove a quadratic upper bound forthe number of rule
schema applications used by the program.

Keywords: Graph programs, automata minimization, rule-based programming, cor-
rectness proofs

1 Introduction

GP is an experimental nondeterministic programming language for high-level problem solving
in the domain of graphs. The language is based on conditionalrule schemata for graph trans-
formation, freeing programmers from implementing and handling low-level data structures for
graphs. The prototype implementation of GP compiles graph programs into bytecode for an ab-
stract machine, and comes with a graphical editor for programs and graphs. We refer to [Plu09]
for an overview of the language and to [MP08] for a description of the current implementation.

In this paper, we present a case study about solving a problemwith GP that as first sight
may not appear to be a graph problem: the minimization of finite automata. It is natural though
to represent finite automata by their transition diagrams and to view the minimization process
as a sequence of transformation steps on these diagrams. Programmers can visually construct
corresponding rule schemata and control the application ofthese schemata by GP’s commands.

We implement the minimization algorithm of Hopcroft, Motwani and Ullman [HMU07] (see
also [Sha09]). This algorithm first computes the indistinguishabilityrelation among states, called
state equivalence, and then merges equivalent states to obtain a minimal automaton that is equiv-
alent to the input automaton. Two states are equivalent if processing strings from either state
will have the same result with respect to acceptance. While state equivalence is usually com-
puted by a table-filling algorithm, in our case we directly connect equivalent states with special
edges. Once the equivalent states have been determined, we merge them by redirecting edges
and removing isolated nodes.

∗ Work of the second and third author was done while visiting the University of York. Funding by the Department of
Computer Science at York is gratefully acknowledged.

1 / 15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs

In Section5, we argue that our implementation is correct in that the graph program will trans-
form every input automaton into an equivalent and minimal output automaton. This involves
showing that the program terminates, that it correctly computes the state equivalence relation,
and that the merging phase produces an automaton in which each equivalence class of states is
represented by a unique state. We also show, in Section6, that the maximal number of rule
schema applications used by our program is quadratic in the size of the input automaton.

This paper is a revised and extended version of [PSS10].

2 Graph Programs

We briefly review GP’s conditional rule schemata and controlconstructs. Technical details (in-
cluding the abstract syntax and operational semantics of GP) can be found in [Plu09], as well as
a number of example programs.

Conditional rule schemata are the “building blocks” of graph programs: a program is essen-
tially a list of declarations of conditional rule schemata together with a command sequence for
controlling the application of the schemata. Rule schematageneralise graph transformation rules
in the double-pushout approach with relabelling [HP02], in that labels can contain expressions
over parameters of type integer or string. Figure1 shows a conditional rule schema consisting
of the identifierbridge followed by the declaration of formal parameters, the left and right
graphs of the schema, the node identifiers1, 2, 3 specifying which nodes are preserved, and the
keywordwhere followed by the conditionnotedge(1,3).

bridge(a,b,x,y,z : int)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a+b

a b

where notedge(1,3)

Figure 1: A conditional rule schema

In the GP programming system [MP08], rule schemata are constructed with a graphical editor.
Labels in the left graph comprise only variables and constants because their values at execution
time are determined by graph matching. The condition of a rule schema is a Boolean expression
built from arithmetic expressions and the special predicateedge, where all variables occurring in
the condition must also occur in the left graph. The predicateedge demands the (non-)existence
of an edge between two nodes in the graph to which the rule schema is applied. For example,
the expressionnotedge(1,3) in the condition of Figure1 forbids an edge from node 1 to node
3 when the left graph is matched.

Conditional rule schemata represent possibly infinite setsof conditional graph transformation
rules, and are applied according to the double-pushout approach with relabelling. A rule schema
L⇒R with conditionΓ represents conditional rules〈〈Lα←K→Rα〉, Γα ,g〉, whereK consists of

GCM 2010 2 / 15

ECEASST

the preserved nodes (which are unlabelled) andΓα ,g is a predicate on graph morphismsg : Lα →
G (see [Plu09]).

GP’s commands for controlling rule-schema applications include the non-deterministic one-
step application of a rule schema, the non-deterministic one-step application of a set{r1, . . . ,rn}
of rule schemata, the sequential compositionP;Q of programsP andQ, the as-long-as-possible
iterationP! of a programP, and the branching statementifC then P else Q for programsC,
P andQ. The first four of these commands have the expected effects. The branching command
first checks if executingC on the current graphG can produce a graph; if this is the case, thenP
is executed onG, otherwiseQ is executed onG.

1

2

3

4

1 2

3

→
bridge! 1

2

3

4

1 2
3

36

5

Figure 2: An execution of the programbridge!

For example, Figure2 shows an execution of the programbridge!. This program makes
an input graph transitive in that for every directed path of the input, the output graph contains
an edge from the first node to the last node of the path. Note that the edge with label 6 can
be produced by applyingbridge in two different ways, performing either the addition 3+ 3
or 1+ 5. In general, a program may produce many different output graphs for the same input.
The semantics of GP assigns to every input graph the set of allpossible output graphs (see
[Plu09, PS10]).

3 Automata Minimization

Our starting point is the abstract minimization algorithm of Hopcroft, Motwani and Ullman
[HMU07] (see also [Sha09]). To fix notation, we consider a deterministic finite automaton (DFA)
as a systemA = (Q,Σ,δ ,q0,F) whereQ is the finite set of states,Σ is the input alphabet,δ : Q×
Σ→ Q is the transition function,q0 is the initial state, andF is the set of final (or accepting)
states. The extension ofδ to strings is denoted byδ ∗ : Q×Σ∗→ Q.

Definition 1 Statesp andq of an automaton areequivalent if for all stringsw ∈ Σ∗, δ ∗(p,w) ∈
F if and only if δ ∗(q,w) ∈ F.

Note that this indeed defines an equivalence relation. We saythat statesp andq aredistin-
guishable if they are not equivalent, that is, there must be some stringw ∈ Σ∗ such that either
δ ∗(p,w) ∈ F andδ ∗(q,w) /∈ F, or vice-versa.

The following minimization algorithm first marks all unordered pairs of distinguishable states
of an automatonA—thus representing state equivalence implicitly by all unmarked pairs of
states. In a second phase, equivalent states are merged to form the states of the minimal au-
tomatonÂ.

3 / 15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs

Algorithm 1 ([HMU07])

Marking phase

Stage 1:
for eachp ∈ F andq ∈ Q−F do mark the pair{p,q}

Stage 2:
repeat

for each non-marked pair{p,q} do
for eacha ∈ Σ do

if {δ (p,a), δ (q,a)} is markedthen mark{p,q}
until no new pair is marked

{For each statep, the equivalence class ofp consists of all statesq for which the pair{p,q} is
not marked.}

Merging phase

ConstructÂ = (Q̂,Σ, δ̂ , q̂0, F̂) as follows:

– Q̂ consists of the state equivalence classes.
– q̂0 is the equivalence class containingq0.
– For eachX ∈ Q̂ anda ∈ Σ, pick anyp ∈ X and setδ̂ (X ,a) = Y , where Y is the

equivalence class containingδ (p,a).
– F̂ consists of the equivalence classes containing states fromF.

By the following lemma, the marking phase of Algorithm1correctly computes the state equiv-
alence.

Lemma 1 ([HMU07, Sha09]) A pair of states is not marked by the marking phase of Algorithm
1 if and only if the states are equivalent.

Using Lemma1, the correctness of Algorithm1 can be established.

Theorem 1([HMU07]) The automaton Â produced by Algorithm 1 accepts the same language
as A and is minimal.

In the next section, we present an implementation of Algorithm 1 in GP. The correctness of
the implementation is proved in Section5.

4 Implementation in GP

We represent automata by their transition diagrams, that is, graphs in which nodes represent
states and edges represent transitions. In the following, the terms ‘node’ and ‘state’, respectively
‘edge’ and ‘transition’ will often be used synonymously. Wemake the following assumptions
about an input automaton:

GCM 2010 4 / 15

ECEASST

1. The states have labels of the formx i, wherex is some integer andi ∈ {0,1}. The compo-
nenti is called atag1, we require that final states have tag 1 and that non-final states have
tag 0. The integerx is arbitrary, except that the initial state, and only this state, has a label
of the form 1i.

2. The transitions are labelled with strings which represent the symbols inΣ.

3. To keep the presentation simple, we assume that all statesare reachable from the initial
state. (It is straightforward to write a graph program that removes all unreachable states.)

The graph program implementing Algorithm1 is shown in Figure3, wheremark, merge
andclean up aremacros. The rule schemata contained in the macros are discussed below.

main = mark; merge; clean up

mark = distinguish!; propagate!; equate!
merge = init; add tag!; (choose; add tag!)!; disconnect!; redirect!
clean up = remove edge!; remove node!; untag!

Figure 3: GP program for automata minimization

We will explain each stage of the program in Figure3, using as running example the mini-
mization of the automaton in Figure4. This automaton accepts all strings over{a,b} that end in
two b’s.

1 0

3 0 4 1

2 0b

a b

a

b
a

a b

Figure 4: Sample automaton with alphabet{a,b}

4.1 Marking Phase

We first need to determine which states are equivalent. For this, we implement the marking phase
of Algorithm 1 in the macromark. The macro’s rule schemata are shown in Figure5.

The subprogramdistinguish! implements Stage 1 of Algorithm1. Given two states
such that one is a final state and the other is not, by assumption, the states carry tags1 and0
respectively. In this case we mark the states as distinguishable by connecting them with two1-
labelled edges of opposite direction (drawn as a single edgewith two arrowheads). The condition
notedge(1,2,1) in distinguish forbids a1-labelled edge between nodes1 and2 to make
sure thatdistinguish! terminates. The ternaryedge predicate refines the binary predicate

1 In general, a label in GP has the formx1 x2 . . . xnwhere eachxi is either an integer or a character string.

5 / 15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs

distinguish(x,y,i,j : int)

x i

1

y j

2

⇒ x i

1

y j

2

1

where i 6= j and notedge(1,2,1)

propagate(x,y,u,v,i,j,m,n : int;s : str)

x i

1

u m

3

y j

2

v n

4

s

s

1 ⇒

x i

1

u m

3

y j

2

v n

4

s

s

11

where notedge(1,2,1)
all matches

equate(x,y,i,j : int)

x i

1

y j

2

⇒ x i

1

y j

2

0

where notedge(1,2,1) and notedge(1,2,0)

Figure 5: Rule schemata of the macromark

discussed in Section2 in that it allows to specify the label of the forbidden edge.2 See Figure
6 for the effect ofdistinguish! on the sample automaton, where we typeset new labels in
italics.

Next, the rule schemapropagate looks for pairs of states that have not yet been discovered
as distinguishable (and so are not linked by a1-edge). The states must have outgoing transitions
with the same symbol, leading to states that have already been discovered as distinguishable.
Again, a newly discovered pair of distinguishable states ismarked by1-labelled edges with op-
posite directions. The subprogrampropagate! thus implements the repeat-loop of Algorithm
1.

Rule schemapropagate has the ‘all matches’ attribute, meaning that nodes of the
schema can be merged before the schema is applied. An alternative view is thatpropagate can
be applied using non-injective graph morphisms. (See [HMP01] for details and the equivalence
of both views.) For the benefit of the reader, Figure7 lists the standard rule schemata represented
by propagate that are possibly applicable to an automaton. Other schemata obtained by node
merging can be ruled out because our automata do not contain1-labelled loops and do not have

2 This predicate is not yet implemented in GP but will be included in the next release.

GCM 2010 6 / 15

ECEASST

1 0

3 0 4 1

2 0b

a b

a

b
a

a b
1

1

1

Figure 6: Sample automaton afterdistinguish!

states with multiple outgoing transitions labelled with the same symbol.
Lemma1 guarantees that after termination ofpropagate!, all pairs of distinguishable states

have been discovered. Thus we can mark the remaining pairs asequivalent, linking their states
with 0-labelled edges in the subprogramequate!. The effect ofpropagate! andequate!
on the sample automaton is shown in Figure8aand Figure8b. We remark that0-edges create
a structure similar to the “equivalent states layer” in the FIRE Station tool for regular language
visualisation [FCW05].

4.2 Merging Phase

After termination of the macromark, the states of the input automaton are partitoned into equiv-
alence classes: these are the subsets of states that are pairwise linked by0-labelled edges. Next
we have to merge all the states in each partition into one state representing the partition. We
need to ensure that all transitions to states that are not representing partitions are redirected to
the unique states representing the partitions. Transitions outgoing from non-representative states
can be removed, as can these states themselves. The merging process is implemented by the
macromerge, whose rule schemata are shown in Figure9.

We first consider the partition containing the initial state. The rule schemainit marks this
state as the unique representative of its partition by adding an extra0-tag to the state’s label.
Then the loopadd tag! marks all other states in the initial partition with an extra1-tag. This
marking procedure is repeated for all other partitions, by the nested loop(choose; add tag!)!.
In each iteration of the outer loop, some unmarked state is chosen as the unique representative
of its partition and subsequently all other states in the partition are marked as non-representative
states.

After all states have been marked as representatives or non-representatives, the rule schemata
disconnectandredirect take care of the transitions leaving and reaching non-representative
states. The loopdisconnect! removes all outgoing transitions (including loops), as these are
no longer needed, whileredirect! redirects each transition reaching a non-representative
state to the unique representative of that state’s partition. Note that by the ‘all matches’ at-
tribute ofredirect, transitions between equivalent states become loops at therepresentatives.
The effect ofinit; add tag! and the whole macromerge on the sample automaton is shown
in Figure8c and Figure8d.

7 / 15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs

propagate 1(x,y,u,v,i,j,m,n : int; s : str)

x i

1

u m

3

y j

2

v n

4

s

s

11 ⇒

x i

1

u m

3

y j

2

v n

4

s

s

111

where notedge(1,2,1)

propagate 2(x,u,v,i,m,n : int; s : str)

x i

1

u m

3

v n

4

s

s

11 ⇒

x i

1

u m

3

v n

4

s

s

111

where notedge(1,4,1)

propagate 3(x,u,v,i,m,n : int; s : str)

x i

1

u m

3

v n

4

s

1 s ⇒

x i

1

u m

3

v n

4

s

1
1

s

where notedge(1,3,1)

Figure 7: Rule schemata represented bypropagate using ‘all matches’

Finally, the rule schemaclean up exhaustively applies the rule schemata shown in Figure
10. The loopremove edge! deletes all integer-labelled edges, as these auxiliary structures
are no longer needed. Thenremove node! deletes all non-representative states—these states
have become isolated. The remaining states are the unique representatives of their equivalence
classes. Last but not least,untag! removes the auxiliary second tag of each state so that the
remaining tag indicates, as before, whether a state is final or not. The resulting automaton is the
unique minimal automaton equivalent to the input automaton(see next section). The automata
resulting fromremove edge! and the overall program in our running example are shown in
Figure8eand Figure8f.

GCM 2010 8 / 15

ECEASST

1 0

3 0 4 1

2 0b

a b

a

b

a

a b
1

1

1

1

1

(a) Afterpropagate!

1 0

3 0 4 1

2 0b

a b

a

b

a

a b
1

1

1

1

10

(b) After equate!

1 0 0

3 0 1 4 1

2 0b

a b

a

b

a

a b
1

1

1

1

10

(c) After init; add tag!

1 0 0

3 0 1 4 1 0

2 0 0b

b

b

1

1

1

1

10

a

a

a

(d) After redirect!

1 0 0

3 0 1 4 1 0

2 0 0
b

b

b

a

a

a

(e) Afterremove edge!

1 0

4 1

2 0
b

b

b

a

a

a

(f) After untag!

Figure 8: Snapshots of the sample automaton

5 Correctness of the Implementation

In this section we argue that the graph program of Figure3 correctly implements Algorithm1.

Lemma 2 The program of Figure 3 terminates for every input automaton.

Proof. By the conditions of the rule schematadistinguish andpropagate, each applica-
tion of these schemata reduces the number of state pairs thatare not linked by 1-labelled edges

9 / 15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs

init(i : int)

1 i

1

⇒ 1 i 0

1

add tag(x,y,i,j : int)

x i 0

1

y j

2

0 ⇒ x i 0

1

y j 1

2

0

choose(x,i : int)

x i

1

⇒ x i 0

1

disconnect(x,u,i,m,p : int; s : str)

u m p

2

x i 1

1

s ⇒

u m p

2

x i 1

1

all matches

redirect(x,y,u,i,j,m : int; s : str)

u m 0

2

x i 1

1

y j 0

3

s

0

⇒

u m 0

2

x i 1

1

y j 0

3

s

0

all matches

Figure 9: Rule schemata of the macromerge

of opposite direction. Similarly, each application ofequate reduces the number of state pairs
that are not linked by 0-labelled edges of opposite direction. Thus the macromark terminates.

Each application of the rule schemaadd tag reduces the number of states that do not have

GCM 2010 10 / 15

ECEASST

remove edge(x,y,i,j,k,m,n : int)

x i k

1

y j m

2

n ⇒ x i k

1

y j m

2

remove node(x,i : int)

x i 1 ⇒ /0

untag(x,i : int)

x i 0

1

⇒ x i

1

Figure 10: Rule schemata of the macroclean up

a label of the formx i 1, wherex and i are integers. Hence both the first loopadd tag!
and the nested loop(choose; add tag!)! terminate (note thatchoose does not affect
labels of the formx i 1). The loopdisconnect! is trivially terminating as each application
of disconnect reduces the number of edges in a graph. The loopredirect! terminates
because each application ofredirect reduces the sum of the degrees of nodes with a label of
the formx i 1. Thus the macromerge terminates, too.

The termination of the three loops in the macroclean up is similarly easy to see. The rule
schemata of the first two loops reduce the number of edges respectively the number of nodes,
and each iteration of the loopuntag! reduces the number of nodes with three tags.

Lemma 3 The macro mark links two distinct states by a 0-labelled edge if and only if the
states are equivalent.

Proof. The loopdistinguish! implements stage 1 of the marking phase of Algorithm1 in
that it links final states with non-final states by a1-labelled edge, marking such pairs as non-
equivalent. Also,propagate! implements stage 2 of the marking phase: the three standard
rule schemata represented bypropagate (see Figure7) cover the possible relations between
the state pairs{p,q} and{δ (p,a), δ (q,a)} in the repeat-loop of Algorithm1. In particular, they
cover the special casesp = δ (p,a), q = δ (q,a), p = δ (q,a) andq = δ (p,a). Hence Lemma1
implies that after termination ofpropagate!, two states are linked by a1-labelled edge if and
only if they are not equivalent. The loopequate! then links two distinct states by a0-labelled
edge if and only if they are not linked by a1-labelled edge, implying the proposition.

Lemma 4 After termination of the macro clean up, two states are equivalent if and only if
they are equal.

11 / 15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs

Proof. Consider an equivalence class of states of the input automaton. Exactly one state in
this class is selected either by the rule schemainit (in the case of the initial state’s class)
or by the rule schemachoose (in all other cases), and a0-tag is appended to the state’s la-
bel. Then the loopadd tag! marks all other states in the equivalence class with an extra
1-tag. Subsequently,disconnect! removes all transitions outgoing from1-tagged states and
redirect! redirects away all transitions leading to1-tagged states. Hence, after termination
of the macromerge, 1-tagged states can be incident only to edges labelled with0 or 1. All
these edges are deleted by the loopremove edge!, so the1-tagged states become isolated and
are eventually removed byremove node!. Thus, upon termination of the macroclean up,
from each equivalence class exactly one state remains in theresulting automaton.

Theorem 2 For every input automaton A, the automaton Â produced by the program of Figure
3 is equivalent to A and minimal.

Proof. By Theorem1, Lemma2 and Lemma3, it suffices to show that the subprogrammerge;
clean up correctly implements the merging phase of Algorithm1. This can be seen as follows:

• By Lemma4, each equivalence class ofA is represented by its unique representative ele-
ment inÂ.

• The rule schemainit selects the initial state ofA as the representative of its class and
untag makes this state the initial state ofÂ.

• Consider any equivalence class of statesX , its representativep ∈ X and anya ∈ Σ. If
δ (p,a) is the representative of its equivalence class, then both states are marked with
a 0-tag in merge and the transition fromp to δ (p,a) is preserved by the subprogram
disconnect!; redirect!. Otherwise, ifδ (p,a) does not represent its class, then it is
marked with a1-tag inmerge. In this caseredirect! redirects the transitionp→
δ (p,a) to the unique representative of the class ofδ (p,a). Henceδ̂ (X ,a), the equivalence
class ofδ (p,a), does not depend on the choice ofp and thus is well-defined.

• In an equivalence class containing a final state, all states are final as otherwise the loop
distinguish! would have linked the non-final states with the final state by1-labelled
edges. Hence the representative of such a class is a final state.

6 Time Complexity

In this section we establish an upper bound for the number of rule schema applications of the
minimization program, in terms of the size of the input automaton. This provides a worst-case
estimate for the running time of our program, where we abstract from the cost of rule schema
matching.3

3 The complexity of rule schema matching is beyond the scope ofthis paper.

GCM 2010 12 / 15

ECEASST

As before, letΣ be the alphabet of an input automaton andQ its set of states. We show that each
loop in the program of Figure3 terminates after at most|Q|2 or |Σ| · |Q| rule schema applications.
In the following lemmata,n always refers to the number of states (nodes) in an input automaton.
Our proofs tacitly rely on the fact that none of the rule schemata of the minimization program
increases the number of nodes in a graph.

Lemma 5 The loops distinguish!, propagate! and equate! each terminate after at most
n2 rule schema applications.

Proof. Given a graphX , let #X be the number of pairs〈u,v〉 of nodes such that there is no edge
with label 1 fromu to v. Then #X ≤ n2 and for every stepG→distinguish H andG→propagate H,
we have #G > #H. This implies the claim fordistinguish! and propagate!. The same
argument works forequate! if we redefine #X as the number of pairs〈u,v〉 such that there is no
edge with label 0 fromu to v.

Lemma 6 The loops add tag! and (choose;add tag!)! each terminate after at most n rule
schema applications.

Proof. Given a graphX , let #X be the number of nodes with a label of the formi j, wherei and
j are integers. Then #X ≤ n and every stepG→add tag H andG→choose H satisfies #G > #H.
This implies the claim.

The complexity of the loops for disconnecting nodes and redirecting edges depends not only
on the number of nodes (states) but also on the size of the alphabetΣ.

Lemma 7 The loops disconnect! and redirect! each terminate after at most |Σ| · n rule
schema applications.

Proof. Each node of an input automaton has|Σ| outgoing edges labelled with symbols fromΣ
(represented as strings), and no rule schema removes or creates such edges beforedisconnect!
is executed. Hencedisconnect! terminates after|Σ| ·n rule schema applications.

Given a graphX , let #X be the number ofΣ-labelled edges whose target nodes have labels of
the formi j 1 for some integersi and j. Then #X ≤ |Σ| ·n and every stepG→redirect H satisfies
#G > #H. Henceredirect! terminates after at most|Σ| ·n rule schema applications.

Lemma 8 The loop remove edge! terminates after at most n2 rule schema applications.

Proof. The following invariant of the minimization program is easyto prove: in each graph of
a computation, each pair of distinct nodes is connected by atmost one pair of opposite edges
labelled with 1 or 0. (Note that an input automaton does not possess such edges.) This invariant
clearly implies the claim.

Lemma 9 The loops remove node! and untag! each terminate after at most n rule schema
applications.

Proof. The claim is obvious in the case ofremove node. For untag, it follows from the fact

13 / 15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs

that every stepG→untag H reduces the number of nodes labelledi j k for some integersi, j and
k.

Summarising the above lemmata, we can see that the number of rule schema applications used
by the minimization program is quadratic in the size of the input automaton.

Theorem 3 The program of Figure 3 terminates after at most O(|Q|2+ |Σ| · |Q|) rule schema
applications.

7 Conclusion

We have shown how to minimize finite automata with rule-based, visual programming. Program-
mers need not be concerned with low-level data structures such as state tables but can directly
manipulate the transition diagrams of automata. Moreover,GP’s rule schemata and control con-
structs provide a convenient language for reasoning about the correctness and the complexity of
the implementation. Last but not least, theall matches option for rule schemata has proved
to be useful for keeping the number of rule schemata small, and an extendededge predicate has
been crucial for forbidding particular edges in the conditions of rule schemata.

The macromergemerges equivalent states by choosing representatives of equivalence classes,
removing and redirecting transitions, and removing isolated states. A simpler implementation
would use non-injective rule schemata to merge states directly—but such rule schemata are not
available in GP. Non-injective rule schemata are also useful in other applications and may be
realised in a future version of GP.

Finally, this case study could be extended by implementing more efficient automata mini-
mization algorithms. We chose the algorithm of Hopcroft, Motwani and Ullman because of
its simplicity, but its cubic running time is not optimal. More efficient algorithms include the
quadratic algorithm of Hopcroft and Ullman [HU79] and Hopcroft’snlogn algorithm [Hop71].

Acknowledgements: We are grateful for the comments of the anonymous referees which
helped to improve the presentation of this paper.

Bibliography

[FCW05] M. Frishert, L. G. Cleophas, B. W. Watson. FIRE Station: An Environment for Ma-
nipulating Finite Automata and Regular Expression Views. In Implementation and
Application of Automata (CIAA 2004), Revised Selected Papers. Lecture Notes in
Computer Science 3317, pp. 125–133. Springer-Verlag, 2005.

[HMP01] A. Habel, J. Müller, D. Plump. Double-Pushout Graph Transformation Revisited.
Mathematical Structures in Computer Science 11(5):637–688, 2001.

[HMU07] J. E. Hopcroft, R. Motwani, J. D. Ullman.Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, third edition, 2007.

GCM 2010 14 / 15

ECEASST

[Hop71] J. E. Hopcroft. Annlogn algorithm for minimizing the states in a finite automaton.
In Kohavi (ed.),The Theory of Machines and Computations. Pp. 189–196. Academic
Press, 1971.

[HP02] A. Habel, D. Plump. Relabelling in Graph Transformation. In Proc. International
Conference on Graph Transformation (ICGT 2002). Lecture Notes in Computer Sci-
ence 2505, pp. 135–147. Springer-Verlag, 2002.

[HU79] J. E. Hopcroft, J. D. Ullman.Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

[MP08] G. Manning, D. Plump. The GP Programming System. InProc. Graph Transforma-
tion and Visual Modelling Techniques (GT-VMT 2008). Electronic Communications
of the EASST 10. 2008.

[Plu09] D. Plump. The Graph Programming Language GP. InProc. Algebraic Informatics
(CAI 2009). Lecture Notes in Computer Science 5725, pp. 99–122. Springer-Verlag,
2009.

[PS10] D. Plump, S. Steinert. The Semantics of Graph Programs. In Proc. Rule-Based
Programming (RULE 2009). Electronic Proceedings in Theoretical Computer Sci-
ence 21, pp. 27–38. 2010.

[PSS10] D. Plump, R. Suri, A. Singh. Minimizing Finite Automata with Graph Programs. In
Proc. Graph Computation Models (GCM 2010). CTIT Workshop Proceedings WP
2010-05, pp. 97–110. University of Twente, 2010.

[Sha09] J. Shallit.A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, 2009.

15 / 15 Volume 39 (2011)

	Introduction
	Graph Programs
	Automata Minimization
	Implementation in GP
	Marking Phase
	Merging Phase

	Correctness of the Implementation
	Time Complexity
	Conclusion

