Electronic Communications of the EASST

Volume 39 (2011)

Graph Computation Models
Selected Revised Papers from the
Third International Workshop on

Graph Computation Models (GCM 2010)

Minimizing Finite Automata with Graph Programs
Detlef Plump, Robin Suri, and Ambuj Singh

15 pages

Guest Editors: Rachid Echahed, Annegret Habel, Mohamed Maosbah

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Minimizing Finite Automata with Graph Programs *

Detlef Plump!, Robin Suri?, and Ambuj Singh®

1 The University of York, UK? Indian Institute of Technology Roorkee, Indigndian Institute
of Technology Kanpur, India

Abstract: GP (for Graph Programs) is a rule-based, nondeterministgram-
ming language for solving graph problems at a high level aftralstion, freeing
programmers from dealing with low-level data structures.this case study, we
present a graph program which minimizes finite automata.prbgram represents
an automaton by its transition diagram, computes the stptiwadence relation, and
merges equivalent states such that the resulting autorigteinimal and equivalent
to the input automaton. We illustrate how the program works lbunning exam-
ple and argue that it correctly implements the minimizaadgorithm of Hopcroft,
Motwani and Uliman. We also prove a quadratic upper bounthinumber of rule
schema applications used by the program.

Keywords: Graph programs, automata minimization, rule-based progniag, cor-
rectness proofs

1 Introduction

GP is an experimental nondeterministic programming lagguar high-level problem solving
in the domain of graphs. The language is based on conditimhalschemata for graph trans-
formation, freeing programmers from implementing and hiagdow-level data structures for
graphs. The prototype implementation of GP compiles grapgrams into bytecode for an ab-
stract machine, and comes with a graphical editor for progrand graphs. We refer t8lu09
for an overview of the language and tdP0g for a description of the current implementation.

In this paper, we present a case study about solving a prob#mGP that as first sight
may not appear to be a graph problem: the minimization ofefiaitomata. It is natural though
to represent finite automata by their transition diagrantstarview the minimization process
as a sequence of transformation steps on these diagramgrafoers can visually construct
corresponding rule schemata and control the applicatidhesfe schemata by GP’s commands.

We implement the minimization algorithm of Hopcroft, Momiand Ullman HMUO7] (see
also [Sha09). This algorithm first computes the indistinguishabiliglation among states, called
state equivalence, and then merges equivalent states to obtain a minimal attonthat is equiv-
alent to the input automaton. Two states are equivalentoiégssing strings from either state
will have the same result with respect to acceptance. Whale £quivalence is usually com-
puted by a table-filling algorithm, in our case we directlyinect equivalent states with special
edges. Once the equivalent states have been determinederge them by redirecting edges
and removing isolated nodes.

* Work of the second and third author was done while visitirgmiversity of York. Funding by the Department of
Computer Science at York is gratefully acknowledged.

1/15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs @

In Section5, we argue that our implementation is correct in that the lypgram will trans-
form every input automaton into an equivalent and minimapotiautomaton. This involves
showing that the program terminates, that it correctly cotep the state equivalence relation,
and that the merging phase produces an automaton in whitheemivalence class of states is
represented by a unique state. We also show, in Seéfidhat the maximal number of rule
schema applications used by our program is quadratic inizeeo$the input automaton.

This paper is a revised and extended versiorP&$10.

2 Graph Programs

We briefly review GP’s conditional rule schemata and cortaristructs. Technical details (in-
cluding the abstract syntax and operational semantics pt@irbe found infPlu0q, as well as
a number of example programs.

Conditional rule schemata are the “building blocks” of drgggograms: a program is essen-
tially a list of declarations of conditional rule schematgdther with a command sequence for
controlling the application of the schemata. Rule schemerteralise graph transformation rules
in the double-pushout approach with relabellihtPP3, in that labels can contain expressions
over parameters of type integer or string. Figlirehows a conditional rule schema consisting
of the identifierbr i dge followed by the declaration of formal parameters, the lefd aight
graphs of the schema, the node identifierg, 3 specifying which nodes are preserved, and the
keywordwher e followed by the conditiomot edge(1,3).

bridge(a,b,x,y,z: int) atb

wher e not edge(1,3)

Figure 1: A conditional rule schema

In the GP programming systeritlP0§], rule schemata are constructed with a graphical editor.
Labels in the left graph comprise only variables and cornsthacause their values at execution
time are determined by graph matching. The condition of @ suhema is a Boolean expression
built from arithmetic expressions and the special prediedge, where all variables occurring in
the condition must also occur in the left graph. The prediedige demands the (hon-)existence
of an edge between two nodes in the graph to which the rularszhe applied. For example,
the expressionot edge(1,3) in the condition of Figurel forbids an edge from node 1 to node
3 when the left graph is matched.

Conditional rule schemata represent possibly infinite set®nditional graph transformation
rules, and are applied according to the double-pushoubapprwith relabelling. A rule schema
L = Rwith conditionl” represents conditional ruléd_% < K — R¥), [9-9), whereK consists of

GCM 2010 2/15

@ ECEASST

the preserved nodes (which are unlabelled) @M is a predicate on graph morphisgsLY —
G (see Plu09).

GP’s commands for controlling rule-schema applicatiortduitle the non-deterministic one-
step application of a rule schema, the non-deterministeesiap application of a s€t1,...,rn}
of rule schemata, the sequential composify@ of programsP andQ, the as-long-as-possible
iterationP! of a programP, and the branching statemerft Ct hen P el se Q for programsC,
P andQ. The first four of these commands have the expected effebis bifanching command
first checks if executin@ on the current graps can produce a graph; if this is the case, tRen
is executed o165, otherwiseQ is executed o016.

Figure 2: An execution of the prograbr i dge!

For example, Figur@ shows an execution of the progrdmi dge! . This program makes
an input graph transitive in that for every directed pathhaf input, the output graph contains
an edge from the first node to the last node of the path. Notetlileaedge with label 6 can
be produced by applyingri dge in two different ways, performing either the addition-3
or 1+5. In general, a program may produce many different outpaphys for the same input.
The semantics of GP assigns to every input graph the set gioalible output graphs (see
[Plu09 PS1Q).

3 Automata Minimization

Our starting point is the abstract minimization algorithinHopcroft, Motwani and Ullman
[HMUQ7] (see also$ha09). To fix notation, we consider a deterministic finite autaome(DFA)
as asysterA= (Q,Z, 5, 0o, F) whereQ s the finite set of stateg, is the input alphabet): Q x

> — Qs the transition functiongp is the initial state, andr is the set of final (or accepting)
states. The extension éfto strings is denoted by*: Q x Z* — Q.

Definition 1 ~ Statesp andq of an automaton arequivalent if for all stringsw € Z*, 5*(p,w) €
F if and only if 5*(q,w) € F.

Note that this indeed defines an equivalence relation. Wehsdystategp and q aredistin-
guishable if they are not equivalent, that is, there must be some strirgz* such that either
o*(p,w) € F andd*(q,w) ¢ F, or vice-versa.

The following minimization algorithm first marks all unomel pairs of distinguishable states
of an automatorA—thus representing state equivalence implicitly by all anked pairs of
states. In a second phase, equivalent states are mergedrtdhie states of the minimal au-
tomatonA.

3/15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs @

Algorithm 1 ([HMUO7])

Marking phase

Sage 1:
for eachp € F andq € Q— F do mark the paif p,q}

Sage 2
repeat
for each non-marked pa{p,q} do
for eachae > do
if {0(p,a), 6(q,a)} is markedthen mark{p,q}
until no new pair is marked

{For each stat@, the equivalence class gfconsists of all stateg for which the pair{ p,q} is
not marked}

Merging phase

ConstructA = (9, =, 5, do, F) as follows:

— Qconsists of the state equivalence classes.

— (o is the equivalence class containigg

— ForeachX € Qandac =, pick anyp € X and seﬁ(x,a) =Y, where Y is the
equivalence class containidgp, a).

— F consists of the equivalence classes containing statesFrom

By the following lemma, the marking phase of Algoritinsorrectly computes the state equiv-
alence.

Lemma 1([HMUQ7, Sha09) A pair of statesisnot marked by the marking phase of Algorithm
1if and only if the states are equivalent.

Using Lemmal, the correctness of Algorithrh can be established.

Theorem 1([HMUO07]) The automaton A produced by Algorithm 1 accepts the same language
asAandisminimal.

In the next section, we present an implementation of Algarii in GP. The correctness of
the implementation is proved in Sectién

4 Implementation in GP

We represent automata by their transition diagrams, thajraphs in which nodes represent
states and edges represent transitions. In the followlregterms ‘node’ and ‘state’, respectively
‘edge’ and ‘transition’ will often be used synonymously. Wiake the following assumptions

about an input automaton:

GCM 2010 4/15

@ ECEASST

1. The states have labels of the foxan, wherex is some integer ande {0,1}. The compo-
nenti is called atag®, we require that final states have tag 1 and that non-finassteve
tag 0. The integex is arbitrary, except that the initial state, and only thatet has a label
of the form 1.i.

2. The transitions are labelled with strings which repréfiesm symbols irk.

3. To keep the presentation simple, we assume that all siegeeachable from the initial
state. (Itis straightforward to write a graph program tlemhoves all unreachable states.)

The graph program implementing Algorithinis shown in Figure3, wheremar k, nmer ge
andcl ean_up aremacros. The rule schemata contained in the macros are discussaal. bel

main = mark; nerge; clean.up

mar k di stingui sh!; propagate!; equate!
nerge = init; addtag!; (choose; addtag!)!; disconnect!; redirect!
cl ean.up = renove_edge!; renove_node!; untag!

Figure 3: GP program for automata minimization

We will explain each stage of the program in Fig&eusing as running example the mini-
mization of the automaton in Figure This automaton accepts all strings oyerb} that end in

twob’s.
@—s 3
b
a b
i a i
<_a\
g b

Figure 4: Sample automaton with alphaketb}

4.1 Marking Phase

We first need to determine which states are equivalent. gntie implement the marking phase
of Algorithm 1 in the macrarar k. The macro’s rule schemata are shown in Figure

The subprograndi sti ngui sh! implements Stage 1 of Algorithrh. Given two states
such that one is a final state and the other is not, by assumkie states carry tagsandO
respectively. In this case we mark the states as distinghistby connecting them with twb-
labelled edges of opposite direction (drawn as a single withewo arrowheads). The condition
notedge(1,2,1) indi sti ngui sh forbids al-labelled edge between nodésand2 to make
sure thadi st i ngui sh! terminates. The ternagdge predicate refines the binary predicate

Ln general, a label in GP has the fornx,-... xawhere eaclx; is either an integer or a character string.
5/15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs @

distinguish(x,y,i,j: int)

QW - O

wher e i # j and notedge(1,2,1)

propagate X,y,u,v,i,j,mn: int;s: str

o

wher e notedge(1,2,1)
all matches

equate(x,y,i,j: int)

QW - O

wher e not edge(1,2,1) and not edge(1,2,0)

Figure 5: Rule schemata of the macrar k

discussed in Sectio® in that it allows to specify the label of the forbidden edg&ee Figure
6 for the effect ofdi st i ngui sh! on the sample automaton, where we typeset new labels in
italics.

Next, the rule schemar opagat e looks for pairs of states that have not yet been discovered
as distinguishable (and so are not linked Hy~adge). The states must have outgoing transitions
with the same symbol, leading to states that have already tiseovered as distinguishable.
Again, a newly discovered pair of distinguishable statemasked byl-labelled edges with op-
posite directions. The subprogrgmopagat e! thus implements the repeat-loop of Algorithm
1.

Rule schemar opagat e has the al | mmat ches’ attribute, meaning that nodes of the
schema can be merged before the schema is applied. An <erviaw is thatpr opagat e can
be applied using non-injective graph morphisms. ($8dP01] for details and the equivalence
of both views.) For the benefit of the reader, Figutests the standard rule schemata represented
by pr opagat e that are possibly applicable to an automaton. Other sclzeatdined by node
merging can be ruled out because our automata do not cdaimelled loops and do not have

2 This predicate is not yet implemented in GP but will be inelddh the next release.

GCM 2010 6/15

@ ECEASST

1
(Lo)—b—(20)
b
a b1
| a i

Sampy \
g ! b

Figure 6: Sample automaton afghrst i ngui sh!

states with multiple outgoing transitions labelled witk #ame symbol.

Lemmal guarantees that after terminationpsfopagat e! , all pairs of distinguishable states
have been discovered. Thus we can mark the remaining pagguaglent, linking their states
with O-labelled edges in the subprograquat e! . The effect ofor opagat e! andequat e!
on the sample automaton is shown in FigBeeand Figure8b. We remark thaD-edges create
a structure similar to the “equivalent states layer” in thRE Station tool for regular language
visualisation FCW03.

4.2 Merging Phase

After termination of the macroar k, the states of the input automaton are partitoned into equiv
alence classes: these are the subsets of states that avis@diimked byO-labelled edges. Next
we have to merge all the states in each partition into one s&giresenting the partition. We
need to ensure that all transitions to states that are notgepting partitions are redirected to
the unique states representing the partitions. Transitiaiigoing from non-representative states
can be removed, as can these states themselves. The memiegpis implemented by the
macromer ge, whose rule schemata are shown in Figawre

We first consider the partition containing the initial staldne rule schemani t marks this
state as the unique representative of its partition by addm extra0-tag to the state’s label.
Then the loopadd_t ag! marks all other states in the initial partition with an extréag. This
marking procedure is repeated for all other partitions,Hgyriested loofchoose; add_tag!)!.

In each iteration of the outer loop, some unmarked stateaserhas the unique representative
of its partition and subsequently all other states in théitgar are marked as non-representative
states.

After all states have been marked as representatives orepoasentatives, the rule schemata
di sconnect andr edi r ect take care of the transitions leaving and reaching non-sepitative
states. The loodi sconnect! removes all outgoing transitions (including loops), as¢hare
no longer needed, whileedi rect ! redirects each transition reaching a non-representative
state to the unique representative of that state’s pantitiote that by thedl | mat ches’ at-
tribute ofr edi r ect , transitions between equivalent states become loops e¢pinesentatives.
The effect ofinit; add tag! and the whole macraer ge on the sample automaton is shown
in Figure8c and Figuresd.

7115 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs @

propagate_1(x,y,u,v,i,j,m,n: int; s: str)

o1

wher e not edge(1,2,1)

propagate 2(x,u,v,i,m,n: int; s: str)

wher e not edge(1,4,1)

propagate_3(x,u,v,i,m,n: int;s: str)

DT Q=T

4

wher e not edge(1,3,1)

Figure 7: Rule schemata representedobppagat e using ‘al | mat ches’

Finally, the rule schemal ean_up exhaustively applies the rule schemata shown in Figure
10. The loopr enove _edge! deletes all integer-labelled edges, as these auxiliangtsires
are no longer needed. Theenove_node! deletes all non-representative states—these states
have become isolated. The remaining states are the uniguesentatives of their equivalence
classes. Last but not leastnt ag! removes the auxiliary second tag of each state so that the
remaining tag indicates, as before, whether a state is firato The resulting automaton is the
unigue minimal automaton equivalent to the input autom#see next section). The automata
resulting fromr enove_edge! and the overall program in our running example are shown in
Figure8eand Figuresf.

GCM 2010 8/15

@ ECEASST

1 1
1 1
(Lof—2—z0) (Lof—o—20)
b b
a 1 b1l 0a 1 b1l
¥ /a ¥ ¥ /a ¥
O==0 =0
N N
4 ! b 4 ! b
(a) Afterpr opagat e! (b) After equat e!

(e) Afterr enove_edge! (f) After unt ag!

Figure 8: Snapshots of the sample automaton

5 Correctness of the Implementation

In this section we argue that the graph program of Figuerrectly implements Algorithm.
Lemma 2 The program of Figure 3 terminates for every input automaton.

Proof. By the conditions of the rule schematast i ngui sh andpr opagat e, each applica-
tion of these schemata reduces the number of state pairarthabt linked by 1-labelled edges

9/15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs @

init

—

i: int)

=

©
©

Q.

d_tag(x,y,i,j: int)
2 1 2

choose(x,i: int)

a

He
o

=

©
©

disconnect(x,u,i,m,p: int; s: str)

O
4

all matches

redirect(x,y,u,1i,j,m: int; s: str)

O
N N
o
©
4
O ®
(9]

o
3

Figure 9: Rule schemata of the macrer ge

all matches

of opposite direction. Similarly, each applicationexfuat e reduces the number of state pairs
that are not linked by 0-labelled edges of opposite directihus the macraar k terminates.
Each application of the rule scheradd_t ag reduces the number of states that do not have

GCM 2010 10/15

@ ECEASST

remove_edge(x,y,1i,j,k,mn: int)

remove node(x,i: int)

) = o

untag(x,i: int)

SN0

1 1

Figure 10: Rule schemata of the macioean_up

a label of the formx.i_1, wherex andi are integers. Hence both the first loadd_t ag!
and the nested loopchoose; add_tag!)! terminate (note thathoose does not affect
labels of the formx_i_1). The loopdi sconnect! is trivially terminating as each application
of di sconnect reduces the number of edges in a graph. The loegi r ect! terminates
because each applicationroédi r ect reduces the sum of the degrees of nodes with a label of
the formx_i_1. Thus the macrorer ge terminates, too.

The termination of the three loops in the macioean_up is similarly easy to see. The rule
schemata of the first two loops reduce the number of edgesatsgy the number of nodes,
and each iteration of the loamt ag! reduces the number of nodes with three tags. O

Lemma 3 The macro mar k links two distinct states by a 0-labelled edge if and only if the
states are equivalent.

Proof. The loopdi st i ngui sh! implements stage 1 of the marking phase of Algorithin

that it links final states with non-final states byl dabelled edge, marking such pairs as non-
equivalent. Alsopr opagat e! implements stage 2 of the marking phase: the three standard
rule schemata represented fpyopagat e (see Figurer) cover the possible relations between
the state pair§p,q} and{d(p,a), 6(g,a)} in the repeat-loop of Algorithm. In particular, they
cover the special casgs= d(p,a), g= 6(q,a), p= 96(q,a) andq= d(p,a). Hence Lemmd
implies that after termination qfr opagat e! , two states are linked byZklabelled edge if and
only if they are not equivalent. The lo@muat e! then links two distinct states byGalabelled
edge if and only if they are not linked bylalabelled edge, implying the proposition. O

Lemma 4 After termination of the macro cl ean_up, two states are equivalent if and only if
they are equal.

11/15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs @

Proof. Consider an equivalence class of states of the input autmmaExactly one state in
this class is selected either by the rule schemat (in the case of the initial state’s class)
or by the rule schemahoose (in all other cases), and @tag is appended to the state’s la-
bel. Then the loomdd_t ag! marks all other states in the equivalence class with an extra
1-tag. Subsequentlgi sconnect! removes all transitions outgoing frointagged states and
redi rect! redirects away all transitions leadingletagged states. Hence, after termination
of the macroner ge, 1-tagged states can be incident only to edges labelled Qvith 1. All
these edges are deleted by the logprove_edge! , so thel-tagged states become isolated and
are eventually removed byenove_node! . Thus, upon termination of the mactd ean_up,

from each equivalence class exactly one state remains mesodting automaton. O

Theorem 2 For every input automaton A, the automaton A produced by the program of Figure
3isequivalent to A and minimal.

Proof. By Theoreml, Lemma2 and Lemmag, it suffices to show that the subprogramar ge;
cl ean_up correctly implements the merging phase of AlgorithnThis can be seen as follows:

e By Lemmad4, each equivalence class Afis represented by its unique representative ele-
ment inA.

e The rule schemani t selects the initial state & as the representative of its class and
unt ag makes this state the initial state Af

e Consider any equivalence class of staXedts representativgp € X and anya € 2. |If
o(p,a) is the representative of its equivalence class, then batlesstare marked with
a 0-tag inner ge and the transition fronp to d(p,a) is preserved by the subprogram
disconnect!; redirect!. Otherwise, ifd(p,a) does not represent its class, then it is
marked with al-tag inmer ge. In this caser edi rect! redirects the transitiop —
o(p,a) to the unique representative of the clas® (b, a). Henced (X, a), the equivalence
class ofd(p,a), does not depend on the choicepdnd thus is well-defined.

e In an equivalence class containing a final state, all stategirzal as otherwise the loop
di sti ngui sh! would have linked the non-final states with the final statd Bgbelled
edges. Hence the representative of such a class is a firal stat

O

6 Time Complexity

In this section we establish an upper bound for the numbeulefschema applications of the
minimization program, in terms of the size of the input auaom. This provides a worst-case
estimate for the running time of our program, where we absfram the cost of rule schema
matching®

3 The complexity of rule schema matching is beyond the scoplei®paper.

GCM 2010 12/15

@ ECEASST

As before, let be the alphabet of an input automaton &tk set of states. We show that each
loop in the program of Figur@terminates after at mo&D|? or || - |Q| rule schema applications.
In the following lemmatan always refers to the number of states (nodes) in an inputaattm.
Our proofs tacitly rely on the fact that none of the rule scatof the minimization program
increases the number of nodes in a graph.

Lemma’5 Theloopsdistinguish!, propagate! and equate! each terminate after at most
n? rule schema applications.

Proof. Given a graptX, let #X be the number of pair&,v) of nodes such that there is no edge
with label 1 fromutov. Then #X < n? and for every stefs —distinguish H @NAG —propagate H,

we have #& > #H. This implies the claim fodistinguish! and propagate!. The same
argument works foequate! if we redefine & as the number of pair&l, v) such that there is no
edge with label O fronu to v. O

Lemma 6 Theloops add_tag! and (choose;add_tag!)! each terminate after at most n rule
schema applications.

Proof. Given a graptX, let #X be the number of nodes with a label of the farm wherei and
j are integers. Then¥#< nand every Stefs —aqq tag H aNdG — cnoose H satisfies & > #H.
This implies the claim. O

The complexity of the loops for disconnecting nodes andreeting edges depends not only
on the number of nodes (states) but also on the size of thalzdph.

Lemma 7 The loops disconnect! and redirect! each terminate after at most || - n rule
schema applications.

Proof. Each node of an input automaton Has$ outgoing edges labelled with symbols frdn
(represented as strings), and no rule schema removes texeeech edges befodé sconnect!
is executed. Hencéisconnect! terminates aftefZ| - n rule schema applications.

Given a graplX, let #X be the number oE-labelled edges whose target nodes have labels of
the formi_j_1 for some integersandj. Then # < |Z|-nand every stefs —reqirect H Satisfies
#G > #H. Henceredirect! terminates after at mo$E| - n rule schema applications. O

Lemma8 Theloop remove_edge! terminates after at most n? rule schema applications.

Proof. The following invariant of the minimization program is easyprove: in each graph of
a computation, each pair of distinct nodes is connected Inmyost one pair of opposite edges
labelled with 1 or 0. (Note that an input automaton does nesess such edges.) This invariant
clearly implies the claim. O

Lemma 9 The loops remove node! and untag! each terminate after at most n rule schema
applications.

Proof. The claim is obvious in the case pémove node. Foruntag, it follows from the fact

13/15 Volume 39 (2011)

Minimizing Finite Automata with Graph Programs @

that every stefs —untag H reduces the number of nodes labeliedk for some integerg j and
K. O

Summarising the above lemmata, we can see that the numhée aichema applications used
by the minimization program is quadratic in the size of theutnautomaton.

Theorem 3 The program of Figure 3 terminates after at most O(|Q|?> + |Z| - |Q|) rule schema
applications.

7 Conclusion

We have shown how to minimize finite automata with rule-basedial programming. Program-
mers need not be concerned with low-level data structurels asi state tables but can directly
manipulate the transition diagrams of automata. MoredwBr's rule schemata and control con-
structs provide a convenient language for reasoning abeutdrrectness and the complexity of
the implementation. Last but not least, tilel nat ches option for rule schemata has proved
to be useful for keeping the number of rule schemata smallaarextendeédge predicate has
been crucial for forbidding particular edges in the codisi of rule schemata.

The macrarer ge merges equivalent states by choosing representativesivbdgnce classes,
removing and redirecting transitions, and removing isulattates. A simpler implementation
would use non-injective rule schemata to merge statestlyirebut such rule schemata are not
available in GP. Non-injective rule schemata are also Wsefather applications and may be
realised in a future version of GP.

Finally, this case study could be extended by implementimgenefficient automata mini-
mization algorithms. We chose the algorithm of Hopcroft, tMani and Ullman because of
its simplicity, but its cubic running time is not optimal. Mefficient algorithms include the
quadratic algorithm of Hopcroft and UllmariJ79] and Hopcroft'snlogn algorithm [Hop71].

Acknowledgements: We are grateful for the comments of the anonymous refereéshwh
helped to improve the presentation of this paper.

Bibliography

[FCWO05] M. Frishert, L. G. Cleophas, B. W. Watson. FIRE StatiAn Environment for Ma-
nipulating Finite Automata and Regular Expression Viewslnhplementation and
Application of Automata (CIAA 2004), Revised Sclected Papers. Lecture Notes in
Computer Science 3317, pp. 125-133. Springer-Verlag, .2005

[HMPO1] A. Habel, J. Muller, D. Plump. Double-Pushout Gnapransformation Revisited.
Mathematical Structuresin Computer Science 11(5):637-688, 2001.

[HMUOQ7] J. E. Hopcroft, R. Motwani, J. D. Ullmarntroduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, third edition, 2007.

GCM 2010 14715

E

ECEASST

[Hop71]

[HPO2]

[HU79]

[MPOS]

[Plu09]

[PS10]

[PSS10]

[Sha09]

J. E. Hopcroft. Amlogn algorithm for minimizing the states in a finite automaton.
In Kohavi (ed.),The Theory of Machines and Computations. Pp. 189-196. Academic
Press, 1971.

A. Habel, D. Plump. Relabelling in Graph Transforioat In Proc. International
Conference on Graph Transformation (ICGT 2002). Lecture Notes in Computer Sci-
ence 2505, pp. 135-147. Springer-Verlag, 2002.

J. E. Hopcroft, J. D. Ullmanintroduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

G. Manning, D. Plump. The GP Programming SystenProc. Graph Transforma-
tion and Visual Modelling Techniques (GT-VMT 2008). Electronic Communications
of the EASST 10. 2008.

D. Plump. The Graph Programming Language GFPrioc. Algebraic Informatics
(CAI 2009). Lecture Notes in Computer Science 5725, pp. 99-122. Sarvierlag,
2009.

D. Plump, S. Steinert. The Semantics of Graph ProgirdmProc. Rule-Based
Programming (RULE 2009). Electronic Proceedings in Theoretical Computer Sci-
ence 21, pp. 27-38. 2010.

D. Plump, R. Suri, A. Singh. Minimizing Finite Autata with Graph Programs. In
Proc. Graph Computation Models (GCM 2010). CTIT Workshop Proceedings WP
2010-05, pp. 97-110. University of Twente, 2010.

J. ShallitA Second Course in Formal Languages and Automata Theory. Cambridge
University Press, 2009.

15/15

Volume 39 (2011)

	Introduction
	Graph Programs
	Automata Minimization
	Implementation in GP
	Marking Phase
	Merging Phase

	Correctness of the Implementation
	Time Complexity
	Conclusion

